12.已知圓O:x2+y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,PM,切點為Q,M,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關(guān)系;
(2)若以P為圓心的圓P與圓O有公共點,試求圓P的半徑最小時圓P的方程;
(3)當P點的位置發(fā)生變化時,直線QM是否過定點,如果是,求出定點坐標,如果不是,說明理由.

分析 (1)由已知Q為切點,可知PQ⊥OQ,結(jié)合勾股定理有|PQ|2=|OP|2-|OQ|2及已知|PQ|=|PA|,利用兩點間的距離公式可得a,b之間的關(guān)系
(2)設(shè)圓P的半徑為R,由圓P與圓O有公共點,且半徑最小,可知R=OP,利用兩點間的距離,結(jié)合(1)中a,b的關(guān)系可轉(zhuǎn)化為關(guān)于a的二次形式,結(jié)合二次函數(shù)的性質(zhì)可求R的最小值,進而可求圓的方程;
(3)求出直線MQ的方程,結(jié)合b=3-2a,即可得出結(jié)論.

解答 解:(1)連OP,∵Q為切點,PQ⊥OQ,由勾股定理有|PQ|2=|OP|2-|OQ|2
∵|PQ|=|PA|故PA2=PO2-1
∴a2+b2-1=(a-2)2+(b-1)2
化簡可得,2a+b-3=0
(2)設(shè)圓P的半徑為R,
∵圓P與圓O有公共點,且半徑最小,
∴R=|OP|=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{{a}^{2}+(-2a+3)^{3}}$=$\sqrt{5(a-\frac{6}{5})^{2}+\frac{9}{5}}$,
故當a=$\frac{6}{5}$時,|OP|min=$\frac{3\sqrt{5}}{5}$
此時,b=$\frac{3}{5}$,Rmin=$\frac{3\sqrt{5}}{5}$-1.
得半徑取最小值時圓P的方程為$(x-\frac{6}{5})^{2}+(y-\frac{3}{5})^{2}=(\frac{3\sqrt{5}}{5}-1)^{2}$;
(3)設(shè)Q(x1,y1),M(x2,y2),則
$\left\{\begin{array}{l}{{{x}_{1}}^{2}+{{y}_{1}}^{2}=1}\\{\frac{b-{y}_{1}}{a-{x}_{1}}•\frac{{y}_{1}}{{x}_{1}}=-1}\end{array}\right.$化簡得ax1+by1=1,
同理ax2+by2=1.
所以,直線MQ的方程為ax+by=1.
∵b=3-2a,代入上式得(x-2y)a+3y-1=0,
令x-2y=0,3y-1=0,得x=$\frac{2}{3}$,y=$\frac{1}{3}$,
∴直線MQ過定點($\frac{2}{3},\frac{1}{3}$).

點評 本題主要考查了圓的性質(zhì)的簡單應(yīng)用,還考查了一定的邏輯推理與運算的能力,試題具有一定的綜合性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點.

(1)若Q是PA的中點,求證:PC∥平面BDQ;
(2)若PB=PD,求證:BD⊥CQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=loga(2x+1)-3必過的定點是(  )
A.(1,0)B.(0,1)C.(0,-3)D.(1,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow$=(-2,-4,-6),|$\overrightarrow{c}$|=$\sqrt{14}$,若($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=7,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某農(nóng)場預(yù)算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(Ⅰ)設(shè)買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知A(10,0),O是坐標原點,P(x,y)在(Ⅰ)中的可行域內(nèi),求$s=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OP}}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知y=f(x)是定義在R上的增函數(shù)且為奇函數(shù),若對任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當x>3時,x2+y2的取值范圍是( 。
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(2x-3)=x2+x+1,求f(x)=$\frac{1}{4}{x^2}+2x+\frac{19}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知空間四邊形OABC,M,N分別是對邊OA,BC的中點,點G在線段MN上,且,設(shè)$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則x,y,z的值分別是( 。
A.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$B.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$C.x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$D.x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案