(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分8分.
記函數(shù)在區(qū)間D上的最大值與最小值分別為與.設函數(shù),..
(1)若函數(shù)在上單調遞減,求的取值范圍;
(2)若.令.
記.試寫出的表達式,并求;
(3)令(其中I為的定義域).若I恰好為,求b的取值范圍,并求.
解:(1),(2分)由題意 (4分)
(2)
1)當時,= g(1)=a+2b-1,= g(b)=ab+b, 此時,
2) 當時,=g(3)=3a+b,= g(b)=ab+b, 此時,
故, (2分)
因在上單調遞減,在單調遞增,故=h()=, (4分)
故當時,得. (6分)
(3)。┊時,f(x)=b,
ⅱ)當,即時,
ⅲ)當時,即(*),(3分)
①若2b-3>1即b>2, 由(*)知,但此時,所以b>2不合題意。
②若2b-3即b2, 由(*)知, 此時
故, (5分) 且
于是,當時,
當時,
即 (7分)
從而可得當a=0時,=0. (8分)
【解析】略
科目:高中數(shù)學 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數(shù)學試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數(shù)學 題型:解答題
(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設數(shù)列的前項和為,若對任意恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數(shù)學 題型:解答題
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當時,試判斷函數(shù)單調性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試理科數(shù)學試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是過點且法向量為的直線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com