4.由1、2、3三個數(shù)字構(gòu)成的四位數(shù)有( 。
A.81個B.64個C.12個D.14個

分析 由題意,每個數(shù)位都有3種選法,利用乘法原理可得結(jié)論.

解答 解:由題意,每個數(shù)位都有3種選法,共有34=81個四位數(shù),
故選:A.

點評 本題考查乘法原理的運用,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若過點(0,2)的直線與拋物線y2=4x有且只有一個公共點,則這樣的直線有( 。
A.一條B.兩條C.三條D.四條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.拋物線y=$\frac{1}{16}$x2的焦點坐標為(0,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.用0,1,2,3,4這五個數(shù)字組成沒有重復數(shù)字的四位數(shù).
(1)可以組成多少個沒有重復數(shù)字的四位數(shù)?
(2)可以組成多少個5的倍數(shù)?
(3)可以組成多少個沒有重復數(shù)字的四位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在平行四邊形ABCD中,O是對角線的交點,下列結(jié)論正確的是( 。
A.$\overrightarrow{AB}$=$\overrightarrow{CD}$,$\overrightarrow{BC}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{OD}$=$\overrightarrow{OA}$C.$\overrightarrow{AO}$+$\overrightarrow{OD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{DA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別是AC,AD上的動點.且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(1)求證:不論λ取何值,總有EF∥平面BCD;
(2)求證:不論λ取何值,總有平面BEF⊥平面ABC;
(3)是否存在λ,使得平面BEF⊥平面ACD?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知正項等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1(a>2$\sqrt{2}$)的右焦點為F,右頂點為A,上頂點為B,且滿足$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{8e}{|FA|}$,其中O 為坐標原點,e為橢圓的離心率.
(1)求橢圓C的方程;
(2)設(shè)點P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:|AN|•|BM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖是一個幾何體的三視圖,若它的體積是$\frac{2}{3}$,則a=1.

查看答案和解析>>

同步練習冊答案