設F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P是C上的一個動點,且|PF1|+|PF2|=4,C的離心率為
1
2

(Ⅰ)求C方程;
(Ⅱ)是否存在過點F2且斜率存在的直線l與橢圓交于不同的兩點C、D,使得|F1C|=|F1D|.若存在,求直線l的方程;若不存在,請說明理由.
分析:(Ⅰ)由已知可得橢圓的長軸長,結合離心率求出c,則b可求,橢圓的方程可求;
(Ⅱ)假設存在,設出直線方程,和橢圓方程聯(lián)立利用跟與系數(shù)求出兩個交點CD的中點,再由|F1C|=|F1D|可知橢圓左焦點在CD的中垂線上,代入坐標后得到矛盾式子,所以假設不成立.
解答:解:(Ⅰ)因為|PF1|+|PF2|=4,所以a=2,
因為離心率為
1
2
,所以c=1,所以b=
3
,
所以橢圓方程為
x2
4
+
y2
3
=1
;
(Ⅱ)假設存在滿足條件的直線l,易知點F2在橢圓的內部,
直線l與橢圓一定有兩個交點,設直線l斜率為k,點C(x1,y1),點D(x2,y2
直線l的方程為y=k(x-1),由方程組
x2
4
+
y2
3
=1
y=k(x-1)

得(4k2+3)x2-8k2x+4k2-12=0.
x1+x2=
8k2
4k2+3
,x0=
x1+x2
2
=
4k2
4k2+3
,
y0=k(x0-1)=k(
4k2
4k2+3
-1)=
-3k
4k2+3

又|F1D|=|F1C|,所以F1在CD的垂直平分線上,又CD的垂直平分線上方程為y+
3k
4k2+3
=-
1
k
(x-
4k2
4k2+3
)
,
所以
3k
4k2+3
=-
1
k
(-1-
4k2
4k2+3
)

所以5k2+3=0,不成立,所以不存在直線l,使得|F1D|=|F1C|.
綜上所述,不存在直線l,使得|F1D|=|F1C|.
點評:本題考查了橢圓的定義及方程的求法,考查了橢圓的簡單幾何性質,是直線與圓錐曲線的綜合題,解答的關鍵是把|F1C|=|F1D|轉化為點F1過CD的中垂線,考查了學生的計算能力,是有一定難度題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設F1,F(xiàn)2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦點.
(1)當P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8時,求橢圓C的左,右焦點F1、F2
(2)F1、F2是(1)中的橢圓的左,右焦點,已知⊙F2的半徑是1,過動點Q的作⊙F2切線QM,使得|QF1|=
2
|QM|
(M是切點),如圖.求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓上一點P(1,
3
2
)
到F1,F(xiàn)2兩點距離之和等于4.
(Ⅰ)求此橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設F1、F2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦點.
(I)當p∈C,且
pF1
pF
2
=0
,|
pF1
|•|
pF
2
|=4
時,求橢圓C的左、右焦點F1、F2的坐標.
(II)F1、F2是(I)中的橢圓的左、右焦點,已知F2的半徑是1,過動點Q作的切線QM(M為切點),使得|QF1|=
2
|QM|
,求動點Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
x2
b2
=1(a>b>0)的焦點,若橢圓C上存在點P,使線段PF1的垂直平分線過點F2,則橢圓離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點.
(1)設橢圓C上的點(
2
2
3
2
)
到F1,F(xiàn)2兩點距離之和等于2
2
,寫出橢圓C的方程;
(2)設過(1)中所得橢圓上的焦點F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設點P是橢圓C 上的任意一點,過原點的直線l與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點P及直線l有關,并證明你的結論.

查看答案和解析>>

同步練習冊答案