棱長為1的正方體中,M是棱AB上的點,若二面角的大小是,求三棱錐的體積.

答案:
解析:

解:因為BC⊥平面BB1M,作BE⊥B1M于E,連CE,由三垂線定理知CE⊥B1M,所以∠CEB是二面角的平面角,即∠CEB=,

在Rt△CBE中,易求

在Rt△B1BM中,易得

所以


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

兩個相同的正四棱錐底面重合組成一個八面體,可放于棱長為1的正方體中,重合的底面與正方體的某一個面平行,各頂點均在正方體的表面上,把滿足上述條件的八面體稱為正方體的“正子體”.
(1)若正子體的六個頂點分別是正方體各面的中心,求異面直線DE與CF所成的角;
(2)問此正子體的體積V是否為定值?若是,求出該定值;若不是,求出體積大小的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福州模擬)對一個邊長為1的正方形進行如下操作:第一步,將它分割成3×3方格,接著用中心和四個角的5個小正方形,構(gòu)成如圖①所示的幾何圖形,其面積S1=
5
9
;第二步,將圖①的5個小正方形中的每個小正方形都進行與第一步相同的操作,得到圖②;依此類推,到第n步,所得圖形的面積Sn=
5
9
n
.若將以上操作類比推廣到棱長為1的正方體中,則到第n步,所得幾何體的體積Vn=
(
1
3
)
n
(
1
3
)
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為1的正方體中,E是棱A1B1的中點,
(1)求證:AE⊥BC;
(2)求CE與平面AA1B1B所成角大。ㄓ梅慈呛瘮(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)二模)兩個相同的正四棱錐底面重合組成一個八面體,可放于棱長為1的正方體中,重合的底面與正方體的某一個面平行,各頂點均在正方體的表面上,把滿足上述條件的八面體稱為正方體的“正子體”.
(1)若正子體的六個頂點分別是正方體各面的中心,求此正子體的體積;
(2)在(1)的條件下,求異面直線DE與CF所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體中ABCD=A1B1C1D1,M、N分別是AC1、A1B1的中點.點P 在正方體的表面上運動,則總能使MP與BN垂直的點P所構(gòu)成的軌跡的周長等于
 

查看答案和解析>>

同步練習冊答案