已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.給出下列五個(gè)命題:
①對(duì)角線AC1被平面A1BD和平面B1CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是
1
6

④正方體與以A為球心,1為半徑的球的公共部分的體積是
π
6
;
⑤在正方形ABCD內(nèi),到頂點(diǎn)A與棱A1B1的距離相等的點(diǎn)的軌跡為一段拋物線.
其中正確命題的序號(hào)為①②④將你認(rèn)為正確命題的序號(hào)都填上).
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①如圖所示,假設(shè)對(duì)角線AC1與平面A1BD相交于點(diǎn)M,可得AM⊥平面A1BD.可得
1
3
AM•
3
4
×(
2
)2
=
1
3
×
1
2
×12×1
,解得AM=
1
3
AC1
,即可判斷出;
②設(shè)正方體的內(nèi)切球、與各條棱相切的球、外接球的半徑分別為
1
2
,
2
2
,
3
2
.即可得出表面積之比;
③而以A1,B,D,C1為頂點(diǎn)的三棱錐的體積V=13-
1
6
=
1
3
,不是
1
6
,即可判斷出;
④正方體與以A為球心,1為半徑的球的公共部分的體積V=
1
8
×
3
×13
=
π
6
;
⑤以DA、DC、DD1分別為x、y、z軸建立空間直角坐標(biāo)系,在正方形ABCD內(nèi),到頂點(diǎn)A與棱A1B1的距離相等的點(diǎn)P(x,y,0)的軌跡為::
(1-x)2+y2
=
1+(1-x)2
,化為y=1(0≤x≤1),為線段BC,即可判斷出.
解答: 解:①如圖所示,假設(shè)對(duì)角線AC1與平面A1BD相交于點(diǎn)M,可得AM⊥平面A1BD.∴
1
3
AM•
3
4
×(
2
)2
=
1
3
×
1
2
×12×1
,解得AM=
3
3
=
1
3
AC1
,
因此對(duì)角線AC1被平面A1BD和平面B1CD1三等分,正確;
②設(shè)正方體的內(nèi)切球、與各條棱相切的球、外接球的半徑分別為
1
2
,
2
2
3
2
.因此表面積之比=4π(
1
2
)2
4π(
2
2
)2
4π(
3
2
)2
=1:2:3,正確;
③而以A1,B,D,C1為頂點(diǎn)的三棱錐的體積V=13-
1
6
=
1
3
,不是
1
6
,不正確;
④正方體與以A為球心,1為半徑的球的公共部分的體積V=
1
8
×
3
×13
=
π
6
,正確;
⑤以DA、DC、DD1分別為x、y、z軸建立空間直角坐標(biāo)系,在正方形ABCD內(nèi),到頂點(diǎn)A與棱A1B1的距離相等的點(diǎn)P(x,y,0)的軌跡為:
(1-x)2+y2
=
1+(1-x)2
,化為y=1(0≤x≤1),為線段BC,不正確.
故答案為:①②④.
點(diǎn)評(píng):本題考查立體幾何線線、線面、面面位置關(guān)系及體積計(jì)算等知識(shí),考查了空間想象能力,考查了計(jì)算能力,屬于較難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下圖展示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R的映射過程:區(qū)間(0,1)中的實(shí)數(shù)m對(duì)應(yīng)數(shù)軸上的點(diǎn)M(點(diǎn)A對(duì)應(yīng)實(shí)數(shù)0,點(diǎn)B對(duì)應(yīng)實(shí)數(shù)1),如圖①;將線段AB圍成一個(gè)圓,使兩端點(diǎn)A、B恰好重合,如圖②;再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長(zhǎng)度對(duì)應(yīng)于圖③中的弧ADM的長(zhǎng)度,如圖③,圖③中直線AM與x軸交于點(diǎn)N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:①f(
1
4
)=1;
②f(
1
2
)=0;
③f(x)是奇函數(shù);
④f(x)在定義域上單調(diào)遞增,
則所有真命題的序號(hào)是( 。
A、①②B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-an(n∈N+).
(1)求證:數(shù)列{an-1}為等比數(shù)列,并寫出{an}的通項(xiàng)公式;
(2)設(shè)bn=a(an-1)-(2n+1)(a為常數(shù)).若b3>0,當(dāng)且僅當(dāng)a=3時(shí),|bn|取到最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<b<0,則下列不等式不成立是( 。
A、
1
a-b
1
a
B、
1
a
1
b
C、|a|>|b|
D、a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投三次,某同學(xué)在A處的命中率為p,在B處的命中率為q,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
X02345
PP1P2P3P4P5
(1)若p=0.25,P1=0.03,求該同學(xué)用上述方式投籃得分是5分的概率
(2)若該同學(xué)在B處連續(xù)投籃3次,投中一次得2分,用Y表示該同學(xué)投籃結(jié)束后所得的總分,試比較E(X)與E(Y)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生身高情況,某校以10%的比例對(duì)高三年級(jí)的700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測(cè)得身高情況的統(tǒng)計(jì)圖如圖:
(1)估計(jì)該校學(xué)生身高在170~185cm之間的概率;
(2)從樣本中身高在180~190cm之間的男生中任選2人,其中身高在185~190cm之間的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3.
(1)作出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間的奇偶性;
(2)求函數(shù)f(x)在x∈(-2,4]時(shí)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列賦值語(yǔ)句正確的是(  )
A、x+y=y-2
B、m=m+1
C、m-n=2
D、5=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin2(π-α)+cos(-α)•sin(
π
2
-α)的值為( 。
A、cos2α
B、2sin2α
C、1
D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案