3.在ABC-A1B1C1中,所有棱長(zhǎng)均相等,且∠ABB1=60°,D為AC的中點(diǎn),求證:
(1)B1C∥平面A1BD;
(2)AB⊥B1C.

分析 (1)連接AB1和A1B,交于E,連接DE,運(yùn)用中位線定理和線面平行的判定定理,即可得證;
(2)取AB中點(diǎn)O,連接OC,OB1,則OB1⊥AB,證明AB⊥平面OB1C,即可證明AB⊥B1C.

解答 證明:(1)連接AB1和A1B,交于E,連接DE,
由D,E分別為AC,A1B的中點(diǎn),可得DE∥B1C,
由DE?平面A1BD,B1C?平面A1BD,
即有B1C∥平面A1BD;
(2)取AB中點(diǎn)O,連接OC,OB1,則OB1⊥AB.
在正△ABC中,O為AB的中點(diǎn),∴OC⊥AB,
∵OB1∩OC=O,
∴AB⊥平面OB1C,
∴AB⊥B1C.

點(diǎn)評(píng) 本題考查線面平行和線面垂直的判定,注意運(yùn)用線面平行和線面垂直的判定定理,考查空間線面位置關(guān)系的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{4}$))=( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)y=f(x)的圖象上存在兩個(gè)點(diǎn)A,B,且關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[A,B]為函數(shù)y=f(x)的“友情點(diǎn)對(duì)”,點(diǎn)對(duì)[A,B]與[B,A]可看作同一個(gè)“友情點(diǎn)對(duì)”,若函數(shù)$f(x)=\left\{\begin{array}{l}2,x<0\\-{x^3}+6{x^2}-9x+a,x≥0\end{array}\right.$恰好由兩個(gè)“友情點(diǎn)對(duì)”,則實(shí)數(shù)a的值為( 。
A.-2B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},則A∪(∁UB)={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.以一個(gè)圓柱的下底面為底面,并以圓柱的上底面圓心為頂點(diǎn)作圓錐,若所得的圓錐底面半徑等于圓錐的高,則圓錐的側(cè)面積與圓柱的側(cè)面積之比為為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,過圓O外一點(diǎn)P作圓O的切線PA,切點(diǎn)為A,連接OP與圓O交于點(diǎn)C,過點(diǎn)C作圓O作AP的垂線,垂足為D,若PA=2$\sqrt{5}$,PC:PO=1:3,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線mx+$\frac{n}{2}$y-1=0在y軸上的截距是-1,且它的傾斜角是直線$\sqrt{3}x-y-3\sqrt{3}$=0的傾斜角的2倍,則(  )
A.m=-$\sqrt{3}$,n=-2B.m=$\sqrt{3}$,n=2C.m=$\sqrt{3}$,n=-2D.m=-$\sqrt{3}$,n=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x>0”是“(x-2)(x-4)<0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若在△ABC內(nèi)部的點(diǎn)P滿足$\frac{{S}_{△PAB}}{PA•AB}$=$\frac{{S}_{△PBC}}{PB•BC}$=$\frac{{S}_{△PAC}}{PA•AC}$,則PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案