【題目】已知

(1)討論函數(shù)的單調性;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)詳見解析;(2).

【解析】

1)求出函數(shù)的導數(shù),通過討論的范圍,求出函數(shù)的單調區(qū)間即可;

2)將不等式轉化為,令,可得,從而可以得到當函數(shù)是減函數(shù)時一定成立,求得的范圍,再說明其他情況不成立,從而求得結果.

(1)因為,

所以,

時, ,上單調遞減;

時,由,

解得上單調遞減,

,解得上單調遞增;

時,令 ,解得上單調遞減,

,解得上單調遞增;

時, 令 ,解得上單調遞減,

,解得上單調遞增;

(2)由

,且,

所以當函數(shù)上是減函數(shù)時一定成立,

上恒成立,

因為,,所以上恒成立,解得

時,令可得

從而可得上單調遞增,在上單調遞減,

所以,不等式不恒成立,不滿足條件,

時,上恒成立,此時,不合題意,

綜上所述,可得的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面;

(2)若為棱的中點,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,

1)求證:平面平面;

2)若點中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且滿足若函數(shù)有六個零點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)相鄰兩個最高點的距離等于

(1)求的值;

(2)求出函數(shù)的對稱軸,對稱中心;

(3)把函數(shù)圖象上所有點的縱坐標伸長到原來的3倍(橫坐標不變),得到函數(shù),再把函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù),不需要過程,直接寫出函數(shù)的函數(shù)關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)

(1)求函數(shù)的解析式,并求出的定義域;

(2)設,試求函數(shù)的定義域,及最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.

1)若,,分別寫出數(shù)列和數(shù)列的通項公式;

2)若是奇函數(shù),且,求;

3)若函數(shù)的圖像關于點對稱,且當時,函數(shù)取得最小值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標準方程;

(2)在(1)的條件下,拋物線的焦點與點關于軸上某點對稱,且拋物線與橢圓在第四象限交于點,過點作拋物線的切線,求該切線方程并求該直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對應法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結論的序號:_____.

查看答案和解析>>

同步練習冊答案