7.命題“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定為(  )
A.?x0∈R,$\sqrt{{3^{x_0}}+1}$>1B.?x0∈R,$\sqrt{{3^{x_0}}+1}$≥1C.?x∈R,$\sqrt{{3^{x_0}}+1}$>1D.?x∈R,$\sqrt{{3^{x_0}}+1}$<1

分析 直接利用特稱命題的否定是全稱命題寫出結果即可.

解答 解:因為特稱命題的否定是全稱命題.
所以命題“?x0∈R,$\sqrt{{3^{x_0}}+1}$≤1”的否定為?x∈R,$\sqrt{{3^{x_0}}+1}$>1.
故選:C.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若運行如圖所示程序框圖,則輸出結果S的值為(  )
A.$\frac{3}{7}$B.$\frac{4}{9}$C.$\frac{9}{20}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.向量的運算常常與實數(shù)運算進行類比,下列類比推理中結論正確的是(  )
A.“若ac=bc(c≠0),則a=b”類比推出“若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$($\overrightarrow{c}$≠$\overrightarrow{0}$),則$\overrightarrow{a}$=$\overrightarrow$”
B.“在實數(shù)中有(a+b)c=ac+bc”類比推出“在向量中($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”
C.“在實數(shù)中有(ab)c=a(bc)”類比推出“在向量中($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
D.“若ab=0,則a=0或b=0”類比推出“若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=blnx.
(1)當b=1時,求G(x)=x2-x-f(x)在區(qū)間[${\frac{1}{2}$,e]上的最值;
(2)若存在一點x0∈[1,e],使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中,a=$\sqrt{3}$,b=1,A=60°,則△ABC的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,圓M與圓N交于A、B兩點,以A為切點作兩圓的切線分別交圓M和圓N于C,D兩點,延長DB交圓M于點E,延長CB交圓N于點F.
(1)求證:△ABC~△DBA;
(2)求證:CF=DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2,AA1=2$\sqrt{3}$,CB⊥AB,D為線段A1B上一點,且A1D=3,P為AA1的中點.
(1)求證:AD⊥A1C;
(2)求二面角P-BC-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=ex(x2+ax+b)有極值點x1,x2(x1<x2),且f(x1)=x1,則關于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實根個數(shù)為( 。
A.0B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(1)當x∈R時.y=|x-1|+|x+2|的最小值為3
(2)當x∈R時,y=|x-1|-|x+2|的最小值為-3,最大值為3.

查看答案和解析>>

同步練習冊答案