已知函數(shù)f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ為銳角,且f(θ+)=,求tan2θ的值.
(1) f(x)的最小正周期為=π,最大值為.(2) tan2θ==2.
解析試題分析:利用二倍角公式以及兩角和的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,
(Ⅰ)直接利用周期公式求出函數(shù)f (x)的最小正周期,最大值易求.
(Ⅱ)由f(θ+)=可得sin(2θ+)=,從而可得cos2θ=,再注意研究0<2θ<π,進(jìn)而可利用求出sin2θ,進(jìn)而可求出tan2θ=.
(1)f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=(sin2x+cos2x)
=sin(2x+).
∴f(x)的最小正周期為=π,最大值為.…………(6分)
(2)∵f(θ+)=, ∴sin(2θ+)=. ∴cos2θ=.
∵θ為銳角,即0<θ<,∴0<2θ<π.
∴sin2θ=.
∴tan2θ==2.…………(13分).
考點(diǎn):倍角公式及兩角和的正弦公式,正切公式,函數(shù)的性質(zhì),同角三角函數(shù)的基本關(guān)系式.
點(diǎn)評:本題主要是利用三角函數(shù)的二倍角公式,兩角和的正弦公式,求解函數(shù)的最小正周期和最值,還考查了利用同角三角函數(shù)式求出其余名函數(shù)值,進(jìn)而得到tan2θ的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
( 本題滿分12分) 已知函數(shù)
(1)求的最小正周期、單調(diào)增區(qū)間、對稱軸和對稱中心;
(2)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)的最小正周期為,當(dāng)時,函數(shù)的最小值為0。
(1)求函數(shù)的表達(dá)式;
(2)在△,若的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)
已知函數(shù)f(t)= ]
(Ⅰ)將函數(shù)g(x)化簡成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題12分)
已知函數(shù).
(Ⅰ)求的最小正周期,并求其單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時,求的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com