已知函數(shù)f(x)=
-x2+2x,x≤1
2ax-5,x>1
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是( 。
A、a<0B、a≤0
C、a<3D、0<a<3
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,在定義域內(nèi),f(x)不是單調(diào)的.考慮x>1時(shí),函數(shù)的單調(diào)性,即可求得結(jié)論.
解答: 解:當(dāng)x≤1時(shí),y=-x2+2x,
由二次函數(shù)的圖象和性質(zhì),可知為增函數(shù),
則當(dāng)x>1時(shí),f(x)=2ax-5不為增函數(shù)即可滿足條件.
即有a≤0.
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),分段函數(shù)的圖象和性質(zhì),正確理解分段函數(shù)的單調(diào)性,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓O1:x2+y2-2mx+m2-4=0與圓O2:x2+y2+2x-4my+4m2-8=0相切,則實(shí)數(shù)m的取值集合是(  )
A、{-
12
5
,2}
B、{-
2
5
,0}
C、{-
12
5
,-
2
5
,2}
D、{-
12
5
,-
2
5
,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、12B、18C、27D、54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a7•a11=6,a4+a14=5,則
a20
a10
等于( 。
A、
2
3
B、
3
2
C、
3
2
2
3
D、-
2
3
或-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原命題:“設(shè)a、b、c∈R,若ac2>bc2則a>b”和它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題共有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知一個(gè)正三棱錐P-ABC的底面棱長(zhǎng)AB=3,高PO=
6
,求這個(gè)正三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=-x+1.
(1)畫出函數(shù)f(x)的圖象;寫出函數(shù)的解析式;
(2)根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時(shí)寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓與雙曲線
x2
3
-
y2
2
=1有相同的焦點(diǎn)且離心率為
1
5
,則橢圓的標(biāo)準(zhǔn)方程為( 。
A、
x2
25
+
y2
20
=1
B、
x2
20
+
y2
25
=1
C、
x2
25
+
y2
5
=1
D、
x2
5
+
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

總體由編號(hào)為01,02,…,19,20的個(gè)體組成,利用下面的隨機(jī)數(shù)表選取7個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第3列和第4列數(shù)字開始由左到右依次選取兩個(gè)數(shù),則選出的第7個(gè)個(gè)體的編號(hào)為
 

78166572080263140702436997280198
32049234493582003623486969387481

查看答案和解析>>

同步練習(xí)冊(cè)答案