1.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-2c=0.
(1)求A.
(2)若等差數(shù)列{an}的公差不為零,且a1cosA=-1,且a2、a4、a8成等比數(shù)列,設(shè){an}的前n項(xiàng)和為T(mén)n,求數(shù)列{$\frac{1}{{T}_{n}}$}的前n項(xiàng)和Sn

分析 (1)利用正弦定理對(duì)acosC+$\sqrt{3}$asinC-b-2c=0變形、結(jié)合三角形內(nèi)角和定理可知$\sqrt{3}$sinA-cosA=2,進(jìn)而利用輔助角公式可得結(jié)論;
(2)通過(guò)(1)可知a1=2,利用a2、a4、a8成等比數(shù)列可知數(shù)列{an}是首項(xiàng)、公差均為2的等差數(shù)列,利用等差數(shù)列的求和公式可知Tn=n(n+1),進(jìn)而利用裂項(xiàng)相消法計(jì)算即得結(jié)論.

解答 解:(1)因?yàn)閍cosC+$\sqrt{3}$asinC-b-2c=0,
所以sinAcosC+$\sqrt{3}$sinAsinC-sinB-2sinC=0,
所以sinAcosC+$\sqrt{3}$sinAsinC=sinB+2sinC=sin(A+C)+2sinC=sinAcosC+sinCcosA+2sinC,
又因?yàn)閟inC≠0,
所以$\sqrt{3}$sinA-cosA=2,
∴sin(A-30°)=1,
∴A-30°=90°,
∴A=120°;
(2)由(1)可知cosA=cos120°=-$\frac{1}{2}$,
又因?yàn)閍1cosA=-1,
所以a1=2,記等差數(shù)列{an}的公差為d(d≠0),
則由a2、a4、a8成等比數(shù)列可知(2+3d)2=(2+d)(2+7d),解得:d=2,
所以數(shù)列{an}是首項(xiàng)、公差均為2的等差數(shù)列,
所以數(shù)列{an}的前n項(xiàng)和Tn=2×$\frac{n(n+1)}{2}$=n(n+1),
因?yàn)?\frac{1}{{T}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
所以Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查三角恒等變換,考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查正弦定理、輔助角公式,考查裂項(xiàng)相消法,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)$\frac{{x}^{2}}{3}$-y2=1的右準(zhǔn)線(xiàn)與它的兩條漸近線(xiàn)分別交于點(diǎn)P,Q,其焦點(diǎn)是F1,F(xiàn)2,則四邊形F1PF2Q的面積是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天數(shù)216362574
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線(xiàn)被圓(x-2)2+y2=4所截得的弦長(zhǎng)為2,則C的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sin(A+C)=8sin2$\frac{B}{2}$.
(1)求cosB;
(2)若a+c=6,△ABC的面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}滿(mǎn)足:$\{\frac{a_n}{n}\}$是公差為1的等差數(shù)列,且${a_{n+1}}=\frac{n+2}{n}{a_n}+1$.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)${b_n}=\frac{1}{{\sqrt{{a_{n+1}}{a_n}}}}$,求數(shù)列{bn}的前n項(xiàng)和;
(3)設(shè)${c_n}=\frac{1}{{\root{4}{a_n}}}$,${c_1}+{c_2}+{c_3}+…+{c_n}≤2\sqrt{n}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,$tanA=\frac{1}{4},tanB=\frac{3}{5}$,若△ABC最小邊為$\sqrt{2}$,則△ABC最大邊的邊長(zhǎng)為$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( 。
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.閱讀右面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案