8.某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天數(shù)216362574
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

分析 (1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.
(2)當(dāng)溫度大于等于25°C時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)°C時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20°C時(shí),需求量為200,求出Y=-100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.

解答 解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),
得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,
根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).
如果最高氣溫不低于25,需求量為500瓶,
如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,
如果最高氣溫低于20,需求量為200瓶,
∴六月份這種酸奶一天的需求量不超過(guò)300瓶的概率p=$\frac{54}{90}$=$\frac{3}{5}$.
(2)當(dāng)溫度大于等于25°C時(shí),需求量為500,
Y=450×2=900元,
當(dāng)溫度在[20,25)°C時(shí),需求量為300,
Y=300×2-(450-300)×2=300元,
當(dāng)溫度低于20°C時(shí),需求量為200,
Y=400-(450-200)×2=-100元,
當(dāng)溫度大于等于20時(shí),Y>0,
由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20°C的天數(shù)有:
90-(2+16)=72,
∴估計(jì)Y大于零的概率P=$\frac{72}{90}=\frac{4}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,考查利潤(rùn)的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù) f(x)=ex(ex-a)-a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n∈N*,n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,…,m+n).
123m+n
(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)<$\frac{n}{(m+n)(n-1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)P在圓x2+y2=1上,點(diǎn)A的坐標(biāo)為(-2,0),O為原點(diǎn),則$\overrightarrow{AO}$•$\overrightarrow{AP}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值為( 。
A.$\frac{6}{5}$B.1C.$\frac{3}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若雙曲線x2-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{3}$,則實(shí)數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=excosx-x.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-2c=0.
(1)求A.
(2)若等差數(shù)列{an}的公差不為零,且a1cosA=-1,且a2、a4、a8成等比數(shù)列,設(shè){an}的前n項(xiàng)和為Tn,求數(shù)列{$\frac{1}{{T}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.(1+$\frac{1}{x^2}$)(1+x)6展開式中x2的系數(shù)為(  )
A.15B.20C.30D.35

查看答案和解析>>

同步練習(xí)冊(cè)答案