12.如圖,圓C:x2+(y-1)2=1與y軸的上交點(diǎn)為A,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿圓C按逆時(shí)針方向運(yùn)動(dòng),設(shè)旋轉(zhuǎn)的角度∠ACP=x(0≤x≤2π),向量$\overrightarrow{OP}$在$\overrightarrow a$=(0,1)方向的射影為y(O為坐標(biāo)原點(diǎn)),則y關(guān)于x的函數(shù)y=f(x)的圖象是( 。
A.B.C.D.

分析 求出$\overrightarrow{OP}$的坐標(biāo),代入向量的投影公式得出y關(guān)于x的函數(shù)即可判斷.

解答 解:∵∠ACP=x,∴P(-sinx,1+cosx),
∴$\overrightarrow{OP}$=(-sinx,1+cosx),
∴y=|$\overrightarrow{OP}$|•$\frac{\overrightarrow{OP}•\overrightarrow{a}}{|\overrightarrow{OP}||\overrightarrow{a}|}$=$\frac{1+cosx}{1}$=1+cosx,
故選B.

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求解,向量的數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:?x∈R,sinx=$\frac{3}{2}$;命題q:?x∈R,x2-4x+5>0,則下列結(jié)論正確的是(  )
A.命題p∧q是真命題B.命題p∧¬q是真命題
C.命題¬p∧q是真命題D.命題¬p∨¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足不等式|x|+|y|≤1,則z=$\frac{y-2}{x-2}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若全集U={0,1,2,3,4,5}且∁UA={x∈N*|1≤x≤3},則集合A的真子集共有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于回歸分析,下列說法錯(cuò)誤的是( 。
A.在回歸分析中,變量間的關(guān)系若是非確定性關(guān)系,那么因變量不能由自變量唯一確定
B.線性相關(guān)系數(shù)可以是正的也可以是負(fù)的
C.在回歸分析中,如果r2=1或r=±1,說明x與y之間完全線性相關(guān)
D.樣本相關(guān)系數(shù)r∈(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow a$=(2,-$\sqrt{3}$),$\overrightarrow b$=(sin2($\frac{π}{4}$+x),cos2x).令f(x)=$\overrightarrow a$•$\overrightarrow b$-1,x∈R,函數(shù)g(x)=f(x+φ),φ∈(0,$\frac{π}{2}$)的圖象關(guān)于(-$\frac{π}{6}$,0)對(duì)稱.
(Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1-$\sqrt{2}sin\frac{C}{2}$,求g(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,則不等式f(x)<5的解集是(-5,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題p:?x0∈N,x02<1,則¬p是(  )
A.?x0∈N,x02≥1B.?x0∈N,x02>1C.?x∈N,x2>1D.?x∈N,x2≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)$z=\frac{1}{1-2i}$,則$\overline z$為(  )
A.$-\frac{1}{5}+\frac{2}{5}i$B.$-\frac{1}{5}-\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}i$D.$\frac{1}{5}-\frac{2}{5}i$

查看答案和解析>>

同步練習(xí)冊(cè)答案