9.如果執(zhí)行如圖所示的框圖,輸入N=5,則輸出的數(shù)S等于( 。
A.$\frac{5}{4}$B.$\frac{5}{6}$C.$\frac{6}{5}$D.$\frac{6}{7}$

分析 由已知中的程序框圖可知,該程序的功能是計算出輸出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$的值,利用裂項相消法,可得答案.

解答 解:由已知中的程序框圖可知,
該程序的功能是計算出輸出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$的值,
∵S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{6}$
=1-$\frac{1}{6}$=$\frac{5}{6}$,
故選:B.

點評 本題考查的知識點是程序框圖,其中根據(jù)已知的程序框圖分析出程序的功能是解答的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C的方程為y2=10x,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“x>3”是“x≥0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足an+1-an=2,a1=2.
(1)求數(shù)列{an}的通項公式;
(2)等比數(shù)列{bn}滿足b1=a1,b4=a8,求{bn}的前n項和Sn;
(3)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-ax-alnx(a∈R).
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)x∈[e,+∞)時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在公務(wù)員招聘中,既有筆試又有面試,某單位在2015年公務(wù)員考試中隨機(jī)抽取100名考生的筆試成績,按成績分為5組[50,60),[60,70),[70,80),[80,90),[90,100],得到的頻率分布直方圖如圖所示.
(1)求a值及這100名考生的平均成績;
(2)若該單位決定在成績較高的第三、四、五組中按分層抽樣抽取6名考生進(jìn)入第二輪面試,現(xiàn)從這6名考生中抽取3名考生接受單位領(lǐng)導(dǎo)面試,設(shè)第四組中恰有1名考生接受領(lǐng)導(dǎo)面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.△ABC的內(nèi)角A、B、C對的邊分別為a、b、c,$\overrightarrow m$=(sinB,5sinA+5sinC)與$\overrightarrow n$=(5sinB-6sinC,sinC-sinA)垂直.
(1)求sinA的值;
(2)若a=2$\sqrt{2}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$不共線,且$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BA}$,則向量$\overrightarrow{OM}$=( 。
A.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$B.$\frac{2}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$C.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$D.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{4}{3}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=$\frac{{2\sqrt{2}}}{3}$|${\overrightarrow b}$|,且($\overrightarrow a$-$\overrightarrow b$)⊥(3$\overrightarrow a$+2$\overrightarrow b$),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.πB.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案