分析 (1)求導數(shù),利用函數(shù)f(x)在x=1處取得極值,可得f′(1)=0,即可求a的值.
(2)當x∈[e,+∞),f(x)≥0恒成立,等價于a≤$\frac{{x}^{2}}{x+lnx}$在x∈[e,+∞)時恒成立,求最值,即可求a的取值范圍
解答 解:(1)f′(x)=2x-a-$\frac{a}{x}$,
由題意可得f′(1)=2-2a=0,解得a=1;
經(jīng)檢驗,a=1時f(x)在x=1處取得極值,
所以a=1.
(2)由x∈[e,+∞)知,x+lnx>0,
所以f(x)≥0恒成立等價于a≤$\frac{{x}^{2}}{x+lnx}$在x∈[e,+∞)時恒成立,
令h(x)=$\frac{{x}^{2}}{x+lnx}$,x∈[e,+∞),
有h′(x)=$\frac{x(x-1+2lnx)}{{(x+lnx)}^{2}}$>0,
所以h(x)在[e,+∞)上是增函數(shù),
有h(x)≥h(e)=$\frac{{e}^{2}}{e+1}$,
所以a≤$\frac{{e}^{2}}{e+1}$.
點評 本小題主要考查函數(shù)與導數(shù)的綜合應用能力,具體涉及到用導數(shù)來描述原函數(shù)的單調(diào)性、極值的情況.本小題對考生的邏輯推理能力與運算求解有較高要求.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{6}$ | C. | $\frac{6}{5}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<a<b | B. | c<b<a | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com