【題目】已知橢圓的中心為坐標原點,焦點在軸上,離心率,以橢圓的長軸和短軸為對角線的四邊形的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若經過點的直線交橢圓于兩點,是否存在直線 ,使得到直線的距離滿足恒成立,若存在,請求出的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦與.當直線的斜率為0時,.
(1)求橢圓的方程;
(2)試探究是否為定值?若是,證明你的結論;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(1+x)t﹣1的定義域為(﹣1,+∞),其中實數t滿足t≠0且t≠1.直線l:y=g(x)是f(x)的圖象在x=0處的切線.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,試確定t的取值范圍;
(3)若a1,a2∈(0,1),求證: .注:當α為實數時,有求導公式(xα)′=αxα﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一個半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點,是圓弧上一點,且.現在線段,線段及圓弧三段所示位置設立廣告位,經測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設弧度,廣告位出租的總收入為元.
(1)求關于的函數解析式,并指出該函數的定義域;
(2)試問:為何值時,廣告位出租的總收入最大?并求出其最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐中,點P是斜邊AB上一點.給出下列四個命題:
①若平面ABC,則三棱錐的四個面都是直角三角形;
②若S在平面ABC上的射影是斜邊AB的中點P,則有;
③若,,,平面ABC,則面積的最小值為3;
④若,,,平面ABC,則三棱錐的外接球體積為.
其中正確命題的序號是__________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓E:經過橢圓C:()的左右焦點,,與橢圓C在第一象限的交點為A,且,E,A三點共線.
(1)求橢圓C的方程;
(2)是否存在與直線(O為原點)平行的直線l交橢圓C于M,N兩點.使,若存在,求直線l的方程,不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程是(為參數),曲線的直角坐標方程為,將曲線上的點向下平移1個單位,然后橫坐標伸長為原來的2倍,縱坐標不變,得到曲線.
(1)求曲線和曲線的直角坐標方程;
(2)若曲線和曲線相交于兩點,求三角形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com