8.定積分${∫}_{0}^{-1}$($\sqrt{1-{x}^{2}}$+x)dx的值為$\frac{π}{4}$+$\frac{1}{2}$.

分析 根據(jù)定積分的幾何意義計(jì)算${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx,利用微積分基本定理計(jì)算${∫}_{0}^{1}$xdx,然后相加即可.

解答 解:根據(jù)定積分的幾何意義可知${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx表示以1為半徑的圓面積的$\frac{1}{4}$,
∴${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$,
又${∫}_{0}^{1}$xdx=$\frac{{x}^{2}}{2}$|$\left.\begin{array}{l}{1}\\{0}\end{array}\right.$=$\frac{1}{2}$,
∴${∫}_{0}^{-1}$($\sqrt{1-{x}^{2}}$+x)dx=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx+${∫}_{0}^{1}$xdx=$\frac{π}{4}+\frac{1}{2}$.
故答案為:$\frac{π}{4}+\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了定積分的幾何意義,微積分基本定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=log2(x2-2x-3),則下列各區(qū)間中,能滿足f(x)單調(diào)遞減的是( 。
A.(3,6)B.(1,2)C.(-1,3)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=4cosωx•sin(ωx+\frac{π}{4})$(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)多面體的直觀圖和三視圖如圖所示,M是AB的 中點(diǎn),一只蜜蜂在該幾何體內(nèi)自由飛舞,則它飛入幾 何體F-AMCD內(nèi)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,向量$\overrightarrow{ON}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1]=.若不等式|MN|≤k恒成立,則稱函數(shù)f(x)在[a,b]上滿足“k范圍線性近似”,其中最小的正實(shí)數(shù)k稱為該函數(shù)的線性近似閥值.則定義在[1,2]上的函數(shù)y=sin$\frac{πx}{3}$與y=x-$\frac{1}{x}$的線性近似閥值分別是( 。
A.1-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$-$\sqrt{2}$B.1+$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$+$\sqrt{2}$C.1-$\sqrt{2}$,1+$\sqrt{2}$D.2-$\sqrt{2}$,2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若過點(diǎn)P(1-a,1+a)和Q(3,2a)的直線的傾斜角為鈍角,則實(shí)數(shù)a的取值范圍是(  )
A.(-2,1)B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\frac{sinx}{|sinx|}+\frac{2cosx}{|cosx|}+\frac{3tanx}{|tanx|}$的值域?yàn)锳,則集合A的子集個(gè)數(shù)為(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,G為BD中點(diǎn),點(diǎn)R在線段BH上,且$\frac{BR}{RH}$=λ(λ>0).現(xiàn)將△AED,△CFD,△DEF分別沿DE,DF,EF折起,使點(diǎn)A,C重合于點(diǎn)B(該點(diǎn)記為P),如圖2所示.
(I)若λ=2,求證:GR⊥平面PEF;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得直線FR與平面DEF所成角的正弦值為$\frac{{2\sqrt{2}}}{5}$?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|-1<x<2},B={x|y=lg(x-1)},則A∩(∁RB)=( 。
A.(-1,1)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案