已知正項(xiàng)數(shù)列{an}滿足an2-(n2+n-1)an-n2-n=0,求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由已知條件推導(dǎo)出[an-(n2+n)](an+1)=0,由此能求出數(shù)列{an}的通項(xiàng)公式.
解答: 解:∵an2-(n2+n-1)an-(n2+n)=0,
∴[an-(n2+n)](an+1)=0.
∵{an}是正項(xiàng)數(shù)列,
∴an=n2+n.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如表給出一個(gè)“三角形數(shù)陣”:
1
4
   
1
2
1
4
  
3
4
3
8
3
16
 
   
已知每一列的數(shù)成等差數(shù)列,從第三行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等,記第i行第j列的數(shù)為aij(i≥j,i,j∈N*),
(1)求a83;
(2)試寫出aij關(guān)于i,j的表達(dá)式;
(3)記第n行的和為An,求數(shù)列{An}的前m項(xiàng)和Bm的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為控制大氣PM2.5的濃度,環(huán)境部門規(guī)定:該市每年的大氣主要污染物排放總量不能超過55萬噸,否則將采取緊急限排措施.已知該市2013年的大氣主要污染物排放總量為40萬噸,通過技術(shù)改造和倡導(dǎo)綠色低碳生活等措施,此后每年的原大氣主要污染物排放量比上一年的排放總量減少10%.同時(shí),因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加大氣主要污染物排放量脅(m>0)萬噸.
(Ⅰ)從2014年起,該市每年大氣主要污染物排放總量(萬噸)依次構(gòu)成數(shù)列{an},求相鄰兩年主要污染物排放總量的關(guān)系式;
(Ⅱ)證明:數(shù)列{an-10m}是等比數(shù)列;
(Ⅲ)若該市始終不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+
a
x
+b(a>b>0),求f(x)的單調(diào)區(qū)間,并證明f(x)在其單調(diào)區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD-A1B1C1D1是棱長(zhǎng)為1的正方體.
(1)求異面直線BC1與B1D1所成的角.
(2)求直線BC1與平面ABCD所成的角.
(3)求二面角C1-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=sin4x+cos4x周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x,0<x≤1
2f(x-1),x>1
,則f(
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)對(duì)兩所高中學(xué)校進(jìn)行學(xué)生體質(zhì)狀況抽測(cè),甲校有學(xué)生800人,乙校有學(xué)生500人,現(xiàn)用分層抽樣的方法在這1300名學(xué)生中抽取一個(gè)樣本.已知在甲校抽取了48人,則在乙校應(yīng)抽取學(xué)生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(
1
2
x+
π
3
)單調(diào)增區(qū)間為:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案