設函數(shù)f(x)是R上的偶函數(shù),且在[0,+∞)上為增函數(shù),則( 。
A、f(-π)>f(3)>f(-2)
B、f(-π)>f(-2)>f(3)
C、f(-π)<f(3)<f(-2)
D、f(-π)<f(-2)<f(3)
考點:奇偶性與單調性的綜合
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)的奇偶性和單調性之間的關系即可得到結論.
解答: 解:∵f(x)是R上的偶函數(shù),
∴f(-π)=f(π),f(-2)=f(2),
∵在[0,+∞)上為增函數(shù),
∴f(π)>f(3)>f(2),
即f(-π)>f(3)>f(-2),
故選:A.
點評:本題主要考查函數(shù)值的大小比較,利用函數(shù)的奇偶性和單調性之間的關系是解決本題的關鍵,綜合考查函數(shù)性質的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足x2+y2=2(x+y),則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2
,則f(
π
8
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2+4x+6≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合 A={x|-2≤x≤4},B={x|x<a},且A∩B≠∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 
π
2
0
sin2
x
2
dx=(  )
A、0
B、
π
4
-
1
2
C、
π
4
-
1
4
D、
π
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下例等式中,對任意實數(shù)α,β均滿足的是(  )
A、tan(α+β)=
tanα+tanβ
1-tanαtanβ
B、tan(α-β)=
tanα-tanβ
1+tanαtanβ
C、cos2α=2cos2α-1
D、sin2α-2sin2α=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
6
),若x∈[0,
π
2
]時函數(shù)y=f(x)+a的最小值為-2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x|x=3n,n∈N*,n≤5},集合A={x|x2-px+27=0},集合B={x|x2-15x+q=0},且A∪∁uB={3,9,12,15},求p,q的值.

查看答案和解析>>

同步練習冊答案