求函數(shù)f(x)=sinx+
1
2
x,x∈(0,2π)的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)為0,求出x∈(0,2π)的解,再令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間,進(jìn)而得到極值.
解答: 解:函數(shù)f(x)=sinx+
1
2
x的導(dǎo)數(shù)f′(x)=cosx+
1
2
,
f′(x)=0,在x∈(0,2π)上有x=
3
3
,
當(dāng)0<x<
3
,或
3
<x<2π時(shí),f′(x)>0,f(x)遞增;
當(dāng)
3
<x<
3
時(shí),f′(x)<0,f(x)遞減.
則x=
3
時(shí),f(x)取得極大值,且為sin
3
+
π
3
=
3
2
+
π
3

當(dāng)x=
3
時(shí),f(x)取得極小值,且為sin
3
+
3
=-
3
2
+
3
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值,考查余弦函數(shù)的圖象和性質(zhì),考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
px-p
-lnx(p>0).
(1)如果f(x)在[1,+∞)上單調(diào)遞增,求p的取值范圍;
(2)設(shè)an=
2n+1
n
,求證:a1+a2+…+an≥2ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x)=
x2+1,x∈[0,1)
1-x2,x∈[-1,0)
且f(x)=f(x+2),函數(shù)g(x))的表達(dá)式為g(x)=
x+3
x+2
,則方程g(x)=f(x)在區(qū)間[-5,1]上的所有實(shí)數(shù)根之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α≠kπ(k∈Z),
a
=(msinα+cosα,nsinα-cosα),
b
=(1,1),且
a
b
,|
a
|=|
b
|,則mn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
、
b
不共線,向量
c
a
b
,且
a
、
b
c
有共同的起點(diǎn)0,λ+μ=1,試證:
a
、
b
c
的終點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求函數(shù)f(x)=lnx+2x-6在區(qū)間(2,3)零點(diǎn)近似值,至少經(jīng)過( 。┐味趾缶_度達(dá)到0.1.
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上任意一點(diǎn)到兩定點(diǎn)O(0,0)和A(3,0)的距離之比為
|MO|
|MA|
=
1
2
,
(1)求曲線C的方程;
(2)過(0,2)點(diǎn)的直線l被曲線C截得的弦長(zhǎng)為2
3
,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

G是一個(gè)非空集合,“O”為定義在G中任意兩個(gè)元素之間的二元代數(shù)運(yùn)算,若G及其運(yùn)算滿足對(duì)于任意的a,b∈G,aob=c,則c∈G,那么就說G關(guān)于這個(gè)“O”運(yùn)算作成一個(gè)封閉集合,如集合A={x|x2=1},A對(duì)于數(shù)的乘法作成一個(gè)封閉集合.以下四個(gè)結(jié)論:
①集合{0}對(duì)于數(shù)的加法作成一個(gè)封閉集合;
②集合B{x|x=2n,n為整數(shù)},B對(duì)于數(shù)的減法作成一個(gè)封閉集合;
③令R是全體大于零 的實(shí)數(shù)所成集合,R對(duì)于數(shù)的乘法作成一個(gè)封閉集合;
④若集合A,B都對(duì)于某個(gè)“O”運(yùn)算作成一個(gè)封閉集合,則A∪B對(duì)于這個(gè)“O”運(yùn)算作成一個(gè)封閉集合.
 其中,正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過M(4,2)與橢圓
x2
8
+
y2
4
=1離心率相同的橢圓標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案