已知橢圓的左右焦點(diǎn)分別為,且經(jīng)過點(diǎn),為橢圓上的動(dòng)點(diǎn),以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓與軸有兩個(gè)交點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.
(1);(2).
【解析】
試題分析:(1)利用橢圓的定義列出表達(dá)式,求出,再由求出,寫出橢圓方程;(2)先找出圓的的圓心和半徑,因?yàn)閳A與軸有兩個(gè)交點(diǎn),所以,化簡(jiǎn)得,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102723293247922194/SYS201310272330154140311095_DA.files/image006.png">為橢圓上的點(diǎn),所以代入橢圓,得出關(guān)于的不等式,解出的范圍.
試題解析:(1)由橢圓定義得, 1分
即, 3分
∴. 又 , ∴ . 5分
故橢圓方程為. 6分
(2)設(shè),則圓的半徑, 7分
圓心到軸距離 , 8分
若圓與軸有兩個(gè)交點(diǎn)則有即, 9分
化簡(jiǎn)得. 10分
為橢圓上的點(diǎn) , 11分
代入以上不等式得
,解得 . 12分
∵, 13分
∴ . 14分
考點(diǎn):1.橢圓的定義;2.圓的圓心和半徑;3.點(diǎn)到直線的距離公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn),.當(dāng)時(shí),M恰為橢圓的上頂點(diǎn),此時(shí)△的周長(zhǎng)為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線與直線分別相交于點(diǎn),,問當(dāng)
變化時(shí),以線段為直徑的圓被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,
若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:
分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓
被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:
分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓
被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn)且當(dāng)時(shí),M是橢圓的上頂點(diǎn),且△的周長(zhǎng)為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A,直線與直線:
分別相交于點(diǎn),問當(dāng)變化時(shí),以線段為直徑的圓
被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,若不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com