【題目】以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程及曲線的普通方程;

2)已知點(diǎn),直線l的參數(shù)方程為t為參數(shù)),設(shè)直線l與曲線交于M,N兩點(diǎn),求的值.

【答案】1;2

【解析】

1)根據(jù)曲線的極坐標(biāo)方程,將代入求解.根據(jù)曲線的參數(shù)方程為,

消去參數(shù)即可

2)將直線l的參數(shù)方程,化為標(biāo)準(zhǔn)參數(shù)方程為,代入得:,然后利用韋達(dá)定理求解.

1)因?yàn)榍的極坐標(biāo)方程,

所以,

所以,

因?yàn)榍的參數(shù)方程為,

消去得:. .

2)將直線l的參數(shù)方程,

化為標(biāo)準(zhǔn)參數(shù)方程為,代入,

得:,

設(shè)M,N兩點(diǎn)對(duì)應(yīng)的參數(shù)為,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),).

(Ⅰ)求的單調(diào)遞增區(qū)間;

(Ⅱ)設(shè),且有兩個(gè)極值點(diǎn),,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是總體的一個(gè)樣本頻率分布直方圖,且在內(nèi)頻數(shù)為8.求:

1)求樣本容量;

2)若在內(nèi)的小矩形面積為0.06,求在內(nèi)的頻數(shù)和樣本在內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間和極值;

(2)證明:當(dāng)時(shí),

(3)若對(duì)任意恒成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角,,,分別是的中點(diǎn),將沿直線翻折至,形成四棱錐.則在翻折過(guò)程中,①;②;③;④平面平面.不可能成立的結(jié)論是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

1)若直線過(guò)定點(diǎn),且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

1)求證:函數(shù)上是增函數(shù);

2)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案