如圖,已知四棱錐的底面為菱形,且,
,.
(1)求證:平面平面 ;
(2)求二面角的平面角的余弦值.
解:(1)如圖所示,取AB中點(diǎn)E,連PE、CE.
則PE是等腰△PAB的底邊上的中線,所以PE⊥AB.
PE=1,CE=,PC=2,即.
由勾股定理可得,PE⊥CE.又因?yàn)锳BÌ平面ABCD,CEÌ平面ABCD,
且AB∩CE=E,所以PE⊥平面ABCD.
而PEÌ平面PAB,所以平面PAB⊥平面ABCD.
(2)(方法1)如圖1,在Rt△PEC中,過(guò)點(diǎn)E作EF⊥PC于點(diǎn)F,連AF.過(guò)A作平面PCD的垂線,垂足為H,連FH.
因?yàn)锳E⊥EC,AE⊥PE,所以AE⊥平面PEC,于是AE⊥PC.
又EF⊥PC,所以PC⊥平面AEF,故PC⊥AF.
已有PC⊥AH,可得PC⊥平面AFH,所以PC⊥FH.
故∠AFH是二面角A-PC-D的平面角.
由AB⊥平面PEC知EF⊥AB,又AB∥CD,所以EF⊥CD.
而已有EF⊥PC,所以EF⊥平面PCD.又因?yàn)锳H⊥平面PCD,
所以AH∥EF.
由于AB∥平面PCD,所以A、E兩點(diǎn)到平面PCD的距離相等,故AH=EF.
所以AEFH是矩形,∠AFH=∠EAF.
在Rt△AEF中,AE=1,EF=,AF=,所以.
即二面角A-PC-D的平面角的余弦值是.
(方法2)以AB中點(diǎn)E為坐標(biāo)原點(diǎn),EC所在直線為x軸,EB所在直線為y軸,EP所在直線為z軸,建立如圖所示的空間直角坐標(biāo)系.
則A(0,-1,0),C(,0,0),D(,-2,0),P(0,0,1),=(,1,0),=(,0,-1),=(0,2,0).
設(shè)是平面PAC的一個(gè)法向量,則,即.
取,可得,.
設(shè)是平面PCD的一個(gè)法向量,則,即.
取,可得,.
故,即二面角A-PC-D的平面角的余弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在新年聯(lián)歡晚會(huì)上,游戲獲勝者甲和乙各有一次抽獎(jiǎng)機(jī)會(huì),共有10個(gè)獎(jiǎng)品,其中一等獎(jiǎng)6個(gè),二等獎(jiǎng)4個(gè),甲、乙二人依次抽取。
(1)甲抽到一等獎(jiǎng),乙抽到二等獎(jiǎng)的概率是多少?
(2)甲、乙二人中至少有一人抽到一等獎(jiǎng)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將五種不同的文件隨機(jī)地放入編號(hào)依次為1,2,3,4,5,6,7的七個(gè)抽屜內(nèi),每個(gè)抽屈至多放一種文件,則文件被放在相鄰的抽屜內(nèi)且文件被放在不相鄰的抽屜內(nèi)的概率是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知命題p::若x+y≠3,則x≠1或y≠2;命題q:若b2=ac,則a,b,c成等比數(shù)列,下列選項(xiàng)中為真命題的是 ( )
A. p B. q C. pq D.(p)q
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
為了考察兩個(gè)變量和之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做100次和150次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為和,已知兩人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量的觀測(cè)數(shù)據(jù)的平均值都是,對(duì)變量的觀測(cè)數(shù)據(jù)的平均值都是,那么下列說(shuō)法正確的是( )
A.和有交點(diǎn) B.與相交,但交點(diǎn)不一定是
C.與必定平行 D.與必定重合
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com