如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).M(x0,y0)在拋物線C2,MC1的切線,切點為A,B(M為原點O,A,B重合于O).x0=1-,切線MA的斜率為-.

(1)p的值;

(2)MC2上運動時,求線段AB中點N的軌跡方程(A,B重合于O,中點為O).

 

【答案】

(1)2 (2) x2=y

【解析】

:(1)因為拋物線C1:x2=4y上任意一點(x,y)的切線斜率為y=,且切線MA的斜率為-,

所以A點坐標為.

故切線MA的方程為y=-(x+1)+ .

因為點M(1-y0)在切線MA及拋物線C2,于是

y0=-(2-)+=-,

y0=-=-.

由①②得p=2.

(2)N(x,y),A,B,

x1x2,N為線段AB中點知

x=,

y=.

切線MA,MB的方程為

y=(x-x1)+ ,

y=(x-x2)+ .

由⑤⑥得MA,MB的交點M(x0,y0)的坐標為

x0=,y0=.

因為點M(x0,y0)C2,

=-4y0,

所以x1x2=-.

由③④⑦得

x2=y,x0.

x1=x2,A,B重合于原點O,AB中點NO,坐標滿足x2=y.

因此AB中點N的軌跡方程為x2=y.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示的曲線C是由部分拋物線C 1:y=x2-1(|x|≥1)和曲線C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直線l與曲線C1相切于點M,與曲線C2相切于點N,記點M的橫坐標為t(t>1),其中A(-1,0),B(1,0).
(1)當t=
2
時,求m的值和點N的坐標;
(2)當實數(shù)m取何值時,∠MAB=∠NAB?并求出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城一模)在綜合實踐活動中,因制作一個工藝品的需要,某小組設計了如圖所示的一個門(該圖為軸對稱圖形),其中矩形ABCD的三邊AB、BC、CD由長6分米的材料彎折而成,BC邊的長為2t分米(1≤t≤
3
2
);曲線AOD擬從以下兩種曲線中選擇一種:曲線C1是一段余弦曲線(在如圖所示的平面直角坐標系中,其解析式為y=cosx-1),此時記門的最高點O到BC邊的距離為h1(t);曲線C2是一段拋物線,其焦點到準線的距離為
9
8
,此時記門的最高點O到BC邊的距離為h2(t).
(1)試分別求出函數(shù)h1(t)、h2(t)的表達式;
(2)要使得點O到BC邊的距離最大,應選用哪一種曲線?此時,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知拋物線C1x2=y,圓M:x2+(y-4)2=1,點P是拋物線C1上一點(異于原點),過點P作圓M的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,設拋物線C1:y2=4mx(m>0)的焦點為F2,且其準線與x軸交于F1,以F1,F(xiàn)2為焦點,離心率e=
12
的橢圓C2與拋物線C1在x軸上方的一個交點為P.
(1)當m=1時,求橢圓C2的方程;
(2)是否存在實數(shù)m,使得△PF1F2的三條邊的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù)m;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案