15.求函數(shù)f(x)=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值以及相應的x的值.

分析 首先對函數(shù)變形為ax+$\frac{x}$(a>0,b>0)的形式,根據(jù)基本不等式得到函數(shù)的單調(diào)性,進一步求最小值.

解答 解:函數(shù)f(x)=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}+\frac{1}{\sqrt{{x}^{2}+2}}$,
因t=$\sqrt{{x}^{2}+2}≥$2,所以函數(shù)f(x)=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$為f(t)=t+$\frac{1}{t}$在t≥2為增函數(shù),所以f(t)≥$\frac{3\sqrt{2}}{2}$;
此時t=2即x=0.

點評 本題變形后容易利用基本不等式求最小值,而忽略基本不等式成立的三個條件;即本題利用基本不等式求最小值時,等號不成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}-3x+1,x≥0\\{x^2}-2x-4,x<0\end{array}\right.$的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,∠C=90°,∠A的平分線AD交BC于D,則$\frac{AB-AC}{CD}$=( 。
A.sinAB.cosBC.tanAD.cotA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若圓錐的側(cè)面積與其底面積之比為2,則該圓錐的軸與母線的夾角大小為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若干個平面把一個長方體分成k個四面體,這些四面體的體積之和等于長方體的體積,則k的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求極限:$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{2}^{n-1}}{{a}^{n-1}+{2}^{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若x<0,要使4x+$\frac{9}{x}$取最大值,則x必須等于( 。
A.±$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,以${{F}_1}({-\sqrt{3},0})$、${{F}_2}({\sqrt{3},0})$為焦點的橢圓C與以原點O為圓心,F(xiàn)1F2為直徑的圓在第一象限的交點的縱坐標為$\frac{{\sqrt{3}}}{3}$.
(1)求橢圓C的標準方程;
(2)過圓與y軸正半軸交點的直線l交橢圓于A、B兩點,若△OAB面積的最小值為$\frac{{2\sqrt{6}}}{5}$,試求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=cosx-2x-2-x-b,若函數(shù)f(x)有兩個不同的零點,則b的取值范圍(-∞,-1).

查看答案和解析>>

同步練習冊答案