分析 方程f(x)+f(2-x)=t恰有4個不同的實數(shù)根?g(x)=f(x)+f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$與y=t的交點,畫出圖象,根據(jù)圖象即可求解.
解答 解:由$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,
得f(2-x)=$\left\{\begin{array}{l}{2-|2-x|,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,
g(x)=f(x)+f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$
畫出函數(shù)g(x)的圖象(如圖),f(-$\frac{1}{2}$)=f($\frac{5}{2}$)=$\frac{7}{4}$.
方程f(x)+f(2-x)=t恰有4個不同的實數(shù)根,則實數(shù)t的取值范圍是:($\frac{7}{4},2$)
故答案為:($\frac{7}{4},2$)
點評 本題考查了函數(shù)的解析式,函數(shù)與方程思想、數(shù)形結(jié)合思想,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2015}$-1 | C. | $\sqrt{2016}$-1 | D. | $\sqrt{2017}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {3} | C. | {1,3} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | 4π | C. | $\frac{2π}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,2} | B. | {-1,0} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$≤k≤2 | B. | k≤-$\frac{1}{2}$或k≥2 | C. | -2≤k≤$\frac{1}{2}$ | D. | k≤-2或k≥$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{EB}$ | B. | $\overrightarrow{BE}$ | C. | $\overrightarrow{AD}$ | D. | $\overrightarrow{CF}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com