【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;又知道國(guó)家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬元) | |
生產(chǎn)一噸 甲種產(chǎn)品 | 7 | 2 | 8 |
生產(chǎn)一噸 乙種產(chǎn)品 | 3 | 5 | 11 |
【答案】該廠每天生產(chǎn)甲種產(chǎn)品5噸,乙種產(chǎn)品7噸,能使該廠日產(chǎn)值最大,最大的產(chǎn)值是117萬元.
【解析】試題分析:
該問題考查線性規(guī)劃的實(shí)際應(yīng)用,由題意建立數(shù)學(xué)模型,每天生產(chǎn)甲種產(chǎn)品x噸,乙種產(chǎn)品y噸, 列出約束條件,且目標(biāo)函數(shù)為,結(jié)合目標(biāo)函數(shù)的幾何意義可得當(dāng)時(shí), ,即該廠每天生產(chǎn)甲種產(chǎn)品5噸,乙種產(chǎn)品7噸,能使該廠日產(chǎn)值最大,最大的產(chǎn)值是117萬元.
試題解析:
設(shè)每天生產(chǎn)甲種產(chǎn)品x噸,
乙種產(chǎn)品y噸, 可得線性約束條件
目標(biāo)函數(shù)為 ,
作出線性約束條件所表示的平面區(qū)域,
如圖所示:
將變形為
當(dāng)直線在縱軸上的截距達(dá)到最大值時(shí), 取最大值.
從圖中可知,當(dāng)直線經(jīng)過點(diǎn)M時(shí), 達(dá)到最大值.
由 得M點(diǎn)的坐標(biāo)為(5,7)
所以當(dāng)時(shí),
因此,該廠每天生產(chǎn)甲種產(chǎn)品5噸,乙種產(chǎn)品7噸,能使該廠日產(chǎn)值最大,最大的產(chǎn)值是117萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條直線l1:2x-y+a=0(a>0),直線l2:4x-2y-1=0和直線l3:x+y-1=0,且l1和l2的距離是.
(1)求a的值.
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是?若能,求出P點(diǎn)坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓的長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線的焦點(diǎn),且橢圓的離心率是.
(1)求橢圓的方程;
(2)過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).若線段的中點(diǎn)的橫坐標(biāo)是,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí)(萬元).每件商品售價(jià)為0.05萬元.通過分析,該工廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某物流公司購買了一塊長(zhǎng)AM=30米,寬AN=20米的矩形地塊,計(jì)劃把圖中矩形ABCD建設(shè)為倉庫,其余地方為道路和停車場(chǎng),要求頂點(diǎn)C在地塊對(duì)角線MN上,B、D分別在邊AM、AN上,假設(shè)AB的長(zhǎng)度為x米
(1)求矩形ABCD的面積S關(guān)于x的函數(shù)解析式;
(2)要使倉庫占地ABCD的面積不少于144平方米,則AB的長(zhǎng)度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的準(zhǔn)線為l,若l與圓x2+y2+6x+5=0的交點(diǎn)為A,B,且|AB|=2 .則p的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=f(x)﹣k.
(1)當(dāng)m=2時(shí),若函數(shù)g(x)有兩個(gè)零點(diǎn),則k的取值范圍是;
(2)若存在實(shí)數(shù)k使得函數(shù)g(x)有兩個(gè)零點(diǎn),則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2≠b2,且b2為a1、a2的等差中項(xiàng),a2為b2、b3的等差中項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過橢圓C的右焦點(diǎn)且垂直于x軸的直線與橢圓交于A,B兩點(diǎn),且|AB|= .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)的直線l交橢圓C于E,F(xiàn)兩點(diǎn),若存在點(diǎn)G(﹣1,y0)使△EFG為等邊三角形,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com