分析 (I)利用數(shù)量積運(yùn)算性質(zhì)、正弦定理、和差公式即可得出.
(II)利用和差公式、三角函數(shù)的單調(diào)性即可得出.
解答 解:(Ⅰ)∵$\overrightarrow m∥\overrightarrow n$,∴acos B-(2c-b)cos A=0,
在△ABC中,由正弦定理得sin Acos B-(2sin C-sin B)cos A=0,
所以sin Acos B-2sin Ccos A+sin Bcos A=0,
即sin Acos B+sin Bcos A=2sin Ccos A,
所以sin(A+B)=2sin Ccos A.
又A+B+C=π,所以sin C=2sin Ccos A,)
因?yàn)?<C<π,所以sin C>0,
所以cos A=$\frac{1}{2}$,又0<A<π,所以A=$\frac{π}{3}$.
(Ⅱ)由已知sinC+sinB=sinB+sin(π-B-A)=sinB+sin($\frac{2π}{3}$-B)
=sinB+$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB=$\sqrt{3}$sin(B+$\frac{π}{6}$)≤$\sqrt{3}$.
當(dāng)B+$\frac{π}{6}$=$\frac{π}{2},B=\frac{π}{3}$.
則△ABC為正三角形時(shí)sinA+sinB的最大值是$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、正弦定理、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-1) | B. | ( 1,0) | C. | (1,-$\frac{π}{2}$) | D. | (1,π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com