A. | (0,-1) | B. | ( 1,0) | C. | (1,-$\frac{π}{2}$) | D. | (1,π) |
分析 先在極坐標(biāo)方程ρ=-2sinθ的兩邊同乘以ρ,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得直角坐標(biāo)系,再利用直角坐標(biāo)方程求解即可.
解答 解:將方程ρ=-2sinθ兩邊都乘以ρ,
圓的方程可化為ρ2=-2ρsin θ,
由y=ρsin θ,x=ρcos θ,
得x2+y2=-2y,即x2+(y+1)2=1,圓心為(0,-1),
∴圓心的極坐標(biāo)(1,-$\frac{π}{2}$).
故選:C.
點(diǎn)評(píng) 本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10.75,10.85) | 3 | |
[10.85,10.95) | 9 | |
[10.95,11.05) | 13 | |
[11.05,11.15) | 16 | |
[11.15,11.25) | 26 | |
[11.25,11.35) | 20 | |
[11.35,11.45) | 7 | |
[11.45,11.55) | a | |
[11.55,11.65) | m | 0.02 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com