(本小題滿(mǎn)分12分) 已知一個(gè)四棱錐的三視圖如圖所示,其中,且,分別為、、的中點(diǎn)
(1)求證:PB//平面EFG
(2)求直線(xiàn)PA與平面EFG所成角的大小
(3)在直線(xiàn)CD上是否存在一點(diǎn)Q,使二面角的大小為?若存在,求出CQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。
(1)根據(jù)已知中的線(xiàn)線(xiàn)平行來(lái)證明得到線(xiàn)面平行的證明。
(2) (3)
解析試題分析:解:(1)取AB中點(diǎn)M,EF//AD//MG EFGM共面,
由EM//PB,PB面EFG,EM面EFG,得PB//平面EFG ………………4分
(2)如圖建立直角坐標(biāo)系,E(0,0,1),F(1,0,1),G(2,1,0)="(1,0,0)," =(1,1,-1),
設(shè)面EFG的法向量為=(x,y,z)由得出x="0," 由得出x+y-z=0
從而=(0,1,1),又=(0,0,1),得cos==(為與的夾角)=45o ……………8分
(3)設(shè)Q(2,b,0),面EFQ的法向量為=(x,y,z),=(2,b,-1)
由得出x="0," 由得出2x+by-z=0,從而=(0,1,b)
面EFD的法向量為=(0,1,0),所以,解得,b=
CQ= ……………12分
考點(diǎn):空間中點(diǎn)線(xiàn)面的位置關(guān)系的運(yùn)用
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用向量法合理的建立直角坐標(biāo)系,然后借助于平面的法向量,以及直線(xiàn)的方向向量來(lái)求解二面角的問(wèn)題。同時(shí)能熟練的運(yùn)用線(xiàn)面的垂直的判定呢性質(zhì)定理解題,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,,點(diǎn)E是AB的中點(diǎn).
(1)求三棱錐的體積;
(2)證明: ;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某多面體的直觀(guān)圖及三視圖如圖所示: E,F分別為PC,BD的中點(diǎn)
(1)求證:
(2)求證:
(3)求此多面體的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
圖1是一個(gè)正方體的表面展開(kāi)圖,MN和PB是兩條面對(duì)角線(xiàn),請(qǐng)?jiān)趫D2的正方體中將MN和PB畫(huà)出來(lái),并就這個(gè)正方體解決下列問(wèn)題
(1) 求證:MN//平面PBD; (2)求證:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,四棱錐的底面是菱形,,面, 是的中點(diǎn), 是的中點(diǎn).
(Ⅰ)求證:面⊥面;
(Ⅱ)求證:∥面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)如圖,ABCD是正方形空地,邊長(zhǎng)為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為m,m.某廣告公司計(jì)劃在此空地上豎一塊長(zhǎng)方形液晶廣告屏幕,.線(xiàn)段MN必須過(guò)點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(2)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com