當(dāng)x∈[0,π]時,sin(2x-
π
6
)≥
1
2
的概率為
1
3
1
3
分析:由題意知本題是一個幾何概型,試驗包含的所有事件是(x∈[0,π]),而滿足條件的事件是使得不等式sin(2x-
π
6
)≥
1
2
的x的值,將其代入幾何概型計算公式進(jìn)行求解.
解答:解:由題意知本題是一個幾何概型,
試驗包含的所有事件是x∈[0,π],
而滿足條件的事件是使得使得不等式sin(2x-
π
6
)≥
1
2
的x的值,
要不等式sin(2x-
π
6
)≥
1
2
(x∈[0,π])成立,
π
6
≤2x-
π
6
6
,∴
π
6
≤x≤
π
3
,
由幾何概型公式得到P=
π
3
π
=
1
3
,
故答案為:
1
3
點評:古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當(dāng)x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,當(dāng)x∈[0,
π
2
]時,滿足f(x)=1的x的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2x.
(1)討論f(x)在區(qū)間(-∞,1]上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)x∈[0,5]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域R的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時,f(x)=x2-2x,若x∈[-4,-2]時,f(x)≥
1
18
(
3
t
-t)
恒成立,則實數(shù)t的取值范圍是( 。
A、(-∞,-1]∪(0,3]
B、(-∞,-
3
]∪(0,
3
]
C、[-1,0)∪[3,+∞)
D、[-
3
,0)∪[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[0,2]時,f(x)=ex+
1
2
xf(0)
,則f(
7
2
)
f(
16
3
)
的大小關(guān)系是(  )

查看答案和解析>>

同步練習(xí)冊答案