已知數(shù)學公式=(1,1),數(shù)學公式=(1,-1),數(shù)學公式=(-1,2),則向量數(shù)學公式可用向量數(shù)學公式、數(shù)學公式表示為________.


分析:設(shè),則可得 (-1,2)=(λ+μ,λ-μ ),解得 λ=,μ=-,可得 即為所求.
解答:設(shè),則 (-1,2)=(λ+μ,λ-μ ),∴λ=,μ=-,
,
故答案為:
點評:本題考查兩個向量坐標形式的運算,用待定系數(shù)法求出λ 和μ 的值,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

21、例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),當x∈[-1,1]時,|f(x)|≤1
(1)證明:|c|≤1.
(2)x∈[-1,1]時,證明|g(x)|≤2.
(3)設(shè)a>0,當-1≤x≤1時,g(x)max=2,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1},N={x∈Z|
1
2
<2x+1<4},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1,2},集合N={!,2,3}則M∩N是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合An={1,3,7,…,(2n-1)}(n∈N*),若從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為TK(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+T3+…+Tn.例如當n=1時,A1={1},T1=1,S1=1;當n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=( 。

查看答案和解析>>

同步練習冊答案