設(shè)函數(shù)f(x)=
x2,x∈[0,1)
1
x
,x∈[1,e2]
,則
e
0
f(x)dx的值為
 
考點(diǎn):分段函數(shù)的應(yīng)用,定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)分段函數(shù)的積分公式進(jìn)行計(jì)算即可.
解答: 解:根據(jù)分段函數(shù)的積分公式得
e
0
f(x)dx=
1
0
x2dx+
e2
1
1
x
dx=
1
3
x3
|
1
0
+lnx|
 
e2
1
=
1
3
+lne2
=
1
3
+2
=
7
3
,
故答案為:
7
3
點(diǎn)評:本題主要考查函數(shù)的積分的計(jì)算,根據(jù)分段函數(shù)的積分公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)為F1F2,離心率為
3
3
,連接橢圓的四個頂點(diǎn)得到的四邊形的面積為2
6
,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.
(1)求橢圓G的方程;
(2)求點(diǎn)M的軌跡E的曲線方程;
(3)點(diǎn)A,B為曲線E上異于原點(diǎn)O的兩點(diǎn),OA⊥OB,
OA
+
OB
=
OC
,求四邊形AOBC的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(0,a)(a>0),直線l1:y=-a交y軸于點(diǎn)B,記過點(diǎn)A且與直線l1相切的圓的圓心為點(diǎn)C.
(1)求動點(diǎn)C的軌跡E的方程;
(2)設(shè)傾斜角為α的直線l2過點(diǎn)A,交軌跡E于兩點(diǎn)P、Q.若tanα=1,且△PBQ的面積為
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5-
6
x
,則f(x)在x∈(0,+∞)是
 
(增函數(shù),減函數(shù))若f(x)在[a,b](0<a<b)的值域是[a,b],則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知與圓C:x2+y2-2x-2y+1=0相切的直線l交于x軸,y軸于A,B兩點(diǎn).|OA|=a.|OB|=b(a>2,b>2).
(1)求證:(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩燈塔A、B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東30°,燈塔B在觀察站C南偏東60°,則A、B之間的距離為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某海海岸線可以近似的看成直線,位于岸邊A處 的海警發(fā)現(xiàn)海中B處有人求救,該海警沒有直接從A處游向B處,而是沿岸邊自A跑到距離B最近的D處,然后游向B處,若海警在岸邊的行進(jìn)速度是6米/秒,在海中的行進(jìn)速度是2米/秒,(不考慮水流速度等因素)
(Ⅰ)請問該海警的選擇是否正確?并說明原因
(Ⅱ)在AD上找一點(diǎn)C,使海警從A到B的時間最短,并求出最短時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的s的值是100,則框圖中的n的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:x+ay+
3
a=0與2x+3y-6=0的交點(diǎn)M在第一象限,則l1的傾斜角的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案