分析 根據(jù)圖象平移變換求出g(x),令g(x)=0可得g(x)可能的零點(diǎn),而[a,a+10π]恰含10個周期,分a是零點(diǎn),a不是零點(diǎn)兩種情況討論,結(jié)合圖象可得g(x)在[a,a+10π]上零點(diǎn)個數(shù)的所有可能值;
解答 解:f(x)=2sin2x,
將y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位后得到y(tǒng)=2sin2(x+$\frac{π}{6}$)+1的圖象,所以g(x)=2sin2(x+$\frac{π}{6}$)+1.
令g(x)=0,得x=kπ+$\frac{5}{12}$π或x=kπ+$\frac{3}{4}$π(k∈z),
因?yàn)閇a,a+10π]恰含10個周期,所以,當(dāng)a是零點(diǎn)時(shí),在[a,a+10π]上零點(diǎn)個數(shù)21,
當(dāng)a不是零點(diǎn)時(shí),a+kπ(k∈z)也都不是零點(diǎn),區(qū)間[a+kπ,a+(k+1)π]上恰有兩個零點(diǎn),故在[a,a+10π]上有20個零點(diǎn).
綜上,y=g(x)在[a,a+10π]上零點(diǎn)個數(shù)的所有可能值為21或20.
故答案為:20或者21.
點(diǎn)評 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換、函數(shù)的奇偶性、根的存在性及根的個數(shù)的判斷,考查數(shù)形結(jié)合思想,結(jié)合圖象分析是解決(2)問的關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{7}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4-$\sqrt{3}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\sqrt{7}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com