【題目】下列判斷正確的是( )
A.若隨機(jī)變量服從正態(tài)分布,,則;
B.已知直線(xiàn)平面,直線(xiàn)平面,則“”是“”的充分不必要條件;
C.若隨機(jī)變量服從二項(xiàng)分布:,則;
D.是的充分不必要條件.
【答案】ABCD
【解析】
由隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),則曲線(xiàn)關(guān)于x=1對(duì)稱(chēng),即可判斷A;結(jié)合面面平行性質(zhì)定理,利用充分條件和必要條件的定義進(jìn)行判斷.可判斷B;
運(yùn)用二項(xiàng)分布的期望公式Eξ=np,即可判斷C;可根據(jù)充分必要條件的定義,注意m=0,即可判斷D.
A.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則曲線(xiàn)關(guān)于x=1對(duì)稱(chēng),可得P(ξ>4)=1﹣0.79=0.21,P(ξ≤﹣2)=P(ξ>4)=0.21,故A正確;
B.若α∥β,∵直線(xiàn)l⊥平面α,∴直線(xiàn)l⊥β,∵m∥β,∴l⊥m成立.
若l⊥m,當(dāng)m∥β時(shí),則l與β的位置關(guān)系不確定,∴無(wú)法得到α∥β.
∴“α∥β”是“l⊥m”的充分不必要條件.故B對(duì);
C.由于隨機(jī)變量ξ服從二項(xiàng)分布:ξ~B(4,),則Eξ=4×0.25=1,故C對(duì);
D.“am2>bm2”可推出“a>b”,但“a>b”推不出“am2>bm2”,比如m=0,故D對(duì);
故選:ABCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重(單位:kg)情況如三維餅圖(1)所示,經(jīng)過(guò)四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.
對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論正確的是( )
A.他們健身后,體重在區(qū)間內(nèi)的人增加了2個(gè)
B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒(méi)有改變
C.他們健身后,20人的平均體重大約減少了
D.他們健身后,原來(lái)體重在區(qū)間內(nèi)的肥胖者體重都有減少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓,圓與圓外切于點(diǎn),且過(guò)點(diǎn),則圓的標(biāo)準(zhǔn)方程為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一些數(shù)學(xué)用語(yǔ),“塹堵”意指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱,而“陽(yáng)馬”指底面為矩形,且有一側(cè)棱垂直于底面的四棱錐.現(xiàn)有一如圖所示的塹堵,,若,當(dāng)陽(yáng)馬體積最大時(shí),則塹堵的外接球體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若,,求函數(shù)的單調(diào)區(qū)間;
(2)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.
①求,的值;
②求實(shí)數(shù)的取值范圍,使得對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線(xiàn):,平面上有一動(dòng)點(diǎn),記點(diǎn)到的距離為.若動(dòng)點(diǎn)滿(mǎn)足:.
(1)求點(diǎn)的軌跡方程;
(2)過(guò)的動(dòng)直線(xiàn)與點(diǎn)的軌跡交于,兩點(diǎn),試問(wèn):在軸上,是否存在定點(diǎn),使得為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前n項(xiàng)組成集合,從集合中任取個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列,當(dāng)時(shí),時(shí),;
(1)若集合,求當(dāng)時(shí),的值;
(2)若集合,證明:時(shí)集合的與時(shí)集合的(為了以示區(qū)別,用表示)有關(guān)系式,其中;
(3)對(duì)于(2)中集合.定義,求(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線(xiàn)上的點(diǎn)對(duì)應(yīng)的參數(shù),射線(xiàn)與曲線(xiàn)交于點(diǎn)
(1)求曲線(xiàn)、的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線(xiàn)上的兩個(gè)點(diǎn)且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com