1.已知點(diǎn)P(2,0),點(diǎn)N到原點(diǎn)O與到點(diǎn)M(3,0)的距離之比為$\frac{1}{2}$,點(diǎn)N的軌跡為曲線C.
(1)求過點(diǎn)P且與曲線C相切的直線的方程;
(2)若過原點(diǎn)O的直線l與曲線C相交于不同的兩點(diǎn)A,B,求△PAB面積的取值范圍.

分析 (1)設(shè)點(diǎn)N(x,y),由已知得|MN|=2|OM|,由此能求出點(diǎn)N的軌跡曲線C的方程,由曲線C是以(-1,0)為圓心,以r=2為半徑的圓,能求出過點(diǎn)P且與曲線C相切的直線的方程.
(2)當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=0,此時(shí)△PAB面積S△PAB=2$\sqrt{3}$.當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=mx,m≠0,聯(lián)立$\left\{\begin{array}{l}{y=mx}\\{(x+1)^{2}+{y}^{2}=4}\end{array}\right.$,得(1+m2)x2+2x-3=0,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式能求出△PAB面積的取值范圍.

解答 解:(1)設(shè)點(diǎn)N(x,y),∵點(diǎn)N到原點(diǎn)O與到點(diǎn)M(3,0)的距離之比為$\frac{1}{2}$,
∴$\frac{|ON|}{|MN|}$=$\frac{1}{2}$,∴|MN|=2|OM|,
∴$\sqrt{(x-3)^{2}+{y}^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,
兩邊平方整理,得點(diǎn)N的軌跡曲線C的方程為:x2+y2+2x-3=0,
即(x+1)2+y2=4,
∴曲線C是以(-1,0)為圓心,以r=2為半徑的圓,
當(dāng)過點(diǎn)P(2,0)且與曲線C相切的直線的斜率不存在時(shí),直線方程為x=2,
圓心C(-1,0)到直線x=2的距離為3≠r=2,不成立.
當(dāng)直線的斜率存在時(shí),設(shè)直線方程為y=k(x-2),
∵圓心C(-1,0)到切線y=k(x-2)的距離等于半徑r=2,
∴$\frac{|3k|}{\sqrt{{k}^{2}+1}}$=2,解得k=±$\frac{2\sqrt{5}}{5}$,
∴過點(diǎn)P且與曲線C相切的直線的方程為y=$±\frac{2\sqrt{5}}{5}$(x-2).
(2)當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=0,
聯(lián)立$\left\{\begin{array}{l}{x=0}\\{(x+1)^{2}+{y}^{2}=4}\end{array}\right.$,得A(0,$\sqrt{3}$),B(0,-$\sqrt{3}$),
|AB|=2$\sqrt{3}$,點(diǎn)P(2,0)到直線AB的距離d=2,
此時(shí)△PAB面積S△PAB=$\frac{1}{2}×|AB|×d$=$\frac{1}{2}×2\sqrt{3}×2$=2$\sqrt{3}$.
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=mx,m≠0,
聯(lián)立$\left\{\begin{array}{l}{y=mx}\\{(x+1)^{2}+{y}^{2}=4}\end{array}\right.$,得(1+m2)x2+2x-3=0,
△=4+12(1+m2)>0,
設(shè)A(x1,y1),B(x2,y2),則${x}_{1}+{x}_{2}=-\frac{2}{1+{m}^{2}}$,x1x2=-$\frac{3}{1+{m}^{2}}$,
|AB|=$\sqrt{1+{m}^{2}}$•$\sqrt{(-\frac{2}{1+{m}^{2}})^{2}-4×(-\frac{3}{1+{m}^{2}})}$=2$\sqrt{\frac{4+3{m}^{2}}{1+{m}^{2}}}$,
點(diǎn)P(2,0)到直線y=mx的距離d=$\frac{|2m|}{\sqrt{1+{m}^{2}}}$,
∴△PAB面積S△PAB=$\frac{1}{2}|AB|•d$=$\frac{1}{2}×2\sqrt{\frac{4+3{m}^{2}}{1+{m}^{2}}}×\frac{|2m|}{\sqrt{1+{m}^{2}}}$=$\frac{2|m|\sqrt{4+3{m}^{2}}}{1+{m}^{2}}$=2$\sqrt{\frac{4+3{m}^{2}}{{m}^{2}+\frac{1}{{m}^{2}}+2}}$,
∴由${m}^{2}+\frac{1}{{m}^{2}}+2$≥4,(當(dāng)且僅當(dāng)${m}^{2}=\frac{1}{{m}^{2}}$,即m2=1時(shí)取等號(hào)),
得當(dāng)m2=1時(shí),△PAB面積最小值(S△PABmin=2$\sqrt{\frac{4+3}{4}}$=$\sqrt{7}$.
又$\underset{lim}{n→∞}(2\sqrt{\frac{4+3{m}^{2}}{{m}^{2}+\frac{1}{{m}^{2}}+2}})$=2$\sqrt{3}$,
∴△PAB面積的取值范圍是[$\sqrt{7}$,2$\sqrt{3}$].

點(diǎn)評(píng) 本題考查過已知點(diǎn)與曲線相切的直線方程的求法,考查三角形的面積的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長(zhǎng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于$\frac{2\sqrt{5}}{5}$,它的一個(gè)頂點(diǎn)恰好是拋物線y=$\frac{1}{4}$x2的焦點(diǎn),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列說法中錯(cuò)誤的是( 。
A.采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為4,15,26,37,48的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為55
B.“x<0”是“l(fā)n(x+1)<0”的必要不充分條件
C.“?x≥2,x2-3x+2≥0”的否定是?x<2,x2-3x+2<0
D.x<3是-1<x<3的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知${a_n}={2^{n-2}}$,數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),則$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和為$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)
(2)已知函數(shù)f(x)的定義域?yàn)椋?,+∞),且$f(x)=2f(\frac{1}{x})-x$,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.由于我市去年冬天多次出現(xiàn)重度污染天氣,市政府決定從今年3月份開始進(jìn)行汽車尾氣的整治,為降低汽車尾氣的排放量,我市某廠生產(chǎn)了甲、乙兩種不同型號(hào)的節(jié)排器,分別從兩種節(jié)排器中隨機(jī)抽取200件進(jìn)行性能質(zhì)量評(píng)估檢測(cè),綜合得分情況的頻率分布直方圖如圖所示.

節(jié)排器等級(jí)如表格所示
綜合得分K的范圍節(jié)排器等級(jí)
K≥85一級(jí)品
75≤k<85二級(jí)品
70≤k<75三級(jí)品
若把頻率分布直方圖中的頻率視為概率,則
(1)如果從甲型號(hào)中按節(jié)排器等級(jí)用分層抽樣的方法抽取10件,然后從這10件中隨機(jī)抽取3件,求至少有2件一級(jí)品的概率;
(2)如果從乙型號(hào)的節(jié)排器中隨機(jī)抽取3件,求其二級(jí)品數(shù)X的分布列及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z=(3+2i)i,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若0<a<b<1,則在ab,ab,logba這三個(gè)數(shù)中最大的一個(gè)是logba.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的方程$\frac{1}{2}$x3-3x2+$\frac{9}{2}$x+a=0,且a≥0,求該方程的解的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案