分析 ①利用105°=90°+15°,15°=45°-30°化簡三角函數使之成為特殊角的三角函數,然后利用兩角和與差的正弦余弦公式進行求解.
②利用75°=30°+45°,化簡三角函數使之成為特殊角的三角函數,然后利用兩角和余弦公式進行求解.
③利用兩角和余弦公式,特殊角的三角函數值即可進行求解.
解答 解:①sin105°=sin(90°+15°)=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
②cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=$\frac{\sqrt{6}-\sqrt{2}}{4}$.
③cos$\frac{π}{5}$cos$\frac{3π}{10}$-sin$\frac{π}{5}$sin$\frac{3π}{10}$=cos($\frac{π}{5}$+$\frac{3π}{10}$)=cos$\frac{π}{2}$=0.
點評 本題考查三角函數的誘導公式,兩角和與差的正弦余弦公式,特殊角的三角函數值在三角函數化簡求值中的應用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{9}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
x(萬元) | 1 | 4 | 5 | 6 |
y(萬元) | 30 | 40 | 60 | 50 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com