17.已知集合M={x|x(4-x)<0},N={x|(x-1)(x-6)<0,x∈Z},則M∩N=( 。
A.(1,6)B.(4,6)C.{4,5,6}D.{5}

分析 分別求出集合M和N,由此利用交集定義能求出M∩N.

解答 解:∵集合M={x|x(4-x)<0}={x|x>4或x<0},
N={x|(x-1)(x-6)<0,x∈Z}={2,3,4,5},
∴M∩N={5}.
故選:D.

點評 本題考查交集的解法,考查不等式的解法及應(yīng)用,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題:
①若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
②隨機變量X服從正態(tài)分布N(1,2),則P(X<0)=P(X>2);
③若二項式${({x+\frac{2}{x^2}})^n}$的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
正確命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.P為雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直線PF2交y軸于點A,則△AF1P的內(nèi)切圓半徑為( 。
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.用反證法證明命題“設(shè)a,b為實數(shù),則方程x2+ax+b=0沒有實數(shù)根”時,要做的假設(shè)是( 。
A.方程x2+ax+b=0至多有一個實根B.方程x2+ax+b=0至少有一個實根
C.方程x2+ax+b=0至多有兩個實根D.方程x2+ax+b=0恰好有兩個實根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$\frac{{(1-i)+(2+\sqrt{5}i)}}{i}$(其中i為虛數(shù)單位);
(2)若復(fù)數(shù)Z=(2m2+m-1)+(4m2-8m+3)i,(m∈R)的共軛復(fù)數(shù)$\overline Z$對應(yīng)的點在第一象限,求實數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知△ABC中,$a=\sqrt{2},b=\sqrt{3},A={45°}$,則三角形的解的個數(shù)( 。
A.0個B.1個C.2個D.0個或1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知動點M到點A(2,0)的距離是它到點B(8,0)的距離一半,則動點M的軌跡方程是( 。
A.(x-2)2+y2=16B.x2+y2=16C.(x-4)2+y2=16D.x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是$\frac{2}{sin1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某三棱錐的三視圖如圖所示,圖中的3個直角三角形的直角邊長度已經(jīng)標(biāo)出,則在該三棱錐中,最短的棱和最長的棱所在直線的成角余弦值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案