(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
(文)某種型號汽車的四個輪胎半徑相同,均為,該車的底盤與輪胎中心在同一水平面上. 該車的涉水安全要求是:水面不能超過它的底盤高度. 如圖所示:某處有一“坑形”地面,其中坑形成頂角為的等腰三角形,且,如果地面上有()高的積水(此時坑內(nèi)全是水,其它因素忽略不計).
(1)當輪胎與同時接觸時,求證:此輪胎露在水面外的高度(從輪胎最上部到水面的距離)為
(2) 假定該汽車能順利通過這個坑(指汽車在過此坑時,符合涉水安全要求),求的最大值.
(精確到1cm).

(1)當輪胎與同時接觸時,求出此輪胎露在水面外的高度即可證明
(2)16cm

解析試題分析: (1) 當輪胎與AB、BC同時接觸時,設(shè)輪胎與AB邊的切點為T,輪胎中心為O,則|OT|=40,由∠ABC=1200,知∠OBT=600,                                  ……2分
故|OB|=.                                                        ……4分
所以,從B點到輪胎最上部的距離為+40,                           ……6分
此輪胎露在水面外的高度為d=+40-(+h)=
從而得證.                                                            ……8分
(2)只要d40,                                                     ……12分
40,解得h16cm.,所以h的最大值為16cm.              ……14分
考點:本小題主要考查函數(shù)在實際問題中的應(yīng)用,考查學生由實際問題向數(shù)學問題轉(zhuǎn)化的能力和運算求解能力.
點評:解決實際應(yīng)用題的關(guān)鍵是認真讀題,正確將實際問題轉(zhuǎn)化為熟悉的數(shù)學問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,扇形是一個觀光區(qū)的平面示意圖,其中,半徑=1,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口到出口的觀光道路,道路由弧,線段及線段組成,其中在線段上且,設(shè)

(1)用表示的長度,并寫出的取值范圍.
(2)當為何值時,觀光道路最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題14分)已知向量m =,向量n =,且mn所成角為,其中A、B、C的內(nèi)角。
(Ⅰ)求角B的大小;
(Ⅱ)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)在中,,,分別是三內(nèi)角A,B,C所對的三邊,已知
(1)求角A的大。
(2)若,試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分) 在中,角的對邊分別為,且滿足
(1)求角的大。
(2)若為鈍角三角形,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角的對邊長分別為的面積為,且
(1)求角
(2)求值:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;
(2) 立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,角A,B,C所對邊分別為a,b,c,且
(Ⅰ)求角A;
(Ⅱ)若m,n,試求|mn|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)
在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且
(1)求角C的大;
(2)若c=,且△ABC的面積為,求a+b的值。

查看答案和解析>>

同步練習冊答案