根據(jù)某固定測速點測得的某時段內(nèi)過往的100輛機(jī)動車的行駛速度(單位:km/h)繪制的頻率分布直方圖如圖所示.該路段限速標(biāo)志牌提示機(jī)動車輛正常行駛速度為60km/h~120km/h,則該時段內(nèi)過往的這100輛機(jī)動車中屬非正常行駛的有
 
輛,圖中的x值為
 
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:利用頻率等于縱坐標(biāo)乘以組距求出正常行駛的頻率;利用所有的頻率和為1,求出非正常行駛的頻率;利用頻數(shù)等于頻率乘以樣本容量求出這100輛汽車中非正常行駛的汽車的輛數(shù).利用頻數(shù)除組距得到x的值.
解答: 解:由直方圖可知,x的值=[1-(0.0025+0.0100+0.0050+0.0150)×20]÷20=0.0175,
因此正常行駛在60km/h~120km/h的頻率為20×(0.0100+0.0150+0.0175)=0.85,
非正常行駛的頻率有1-0.85=0.15;
所以這100輛汽車中非正常行駛的汽車有100×0.15=15(輛),
故答案為:15;0.0175.
點評:本題考查頻率分布直方圖中,頻率等于縱坐標(biāo)乘以組距、考查頻數(shù)等于頻率乘以樣本容量、考查所有的頻率和為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位從一所學(xué)校招收某類特殊人才.對20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
邏輯思維能力

運動協(xié)調(diào)能力
一般 良好 優(yōu)秀
一般 2 2 1
良好 4 b 1
優(yōu)秀 1 3 a
例如,表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有4人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機(jī)抽取一位,抽到運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為
2
5

(Ⅰ)求a,b的值;
(Ⅱ)從參加測試的20位學(xué)生中任意抽取2位,求其中至少有一位運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;
(Ⅲ)從參加測試的20位學(xué)生中任意抽取2位,設(shè)運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-[x],其中[x]表示不超過實數(shù)x的最大整數(shù),若關(guān)于x的方程f(x)=kx+k有三個不同的實根,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2)
b
=(3,4)
,則
a
b
上的投影=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=cosα
y=2+sinα
(α為參數(shù)).在極坐標(biāo)系中,C2的方程為ρ(3cosθ-4sinθ)=6,則C1與C2的交點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(a,27)在函數(shù)y=3x的圖象上,則tan
π
a
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CD∥AP,AD、BC相交于點E,F(xiàn)為CE上一點,且∠EDF=∠C,若CE:BE=3:2,DE=3,EF=2.則PA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時;0<f(x)<2;當(dāng)x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)>0
,則函數(shù)y=f(x)-|tanx|在區(qū)間[-2π,2π]上的零點個數(shù)為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx-bx2,其圖象在點P(2,f(2))處切線的斜率為-3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間(用只含有b的式子表示);
(2)當(dāng)a=2時,令g(x)=f(x)-kx,設(shè)x1,x2(x1<x2)是函數(shù)g(x)=0的兩個根,x0是x1,x2的等差中項,求證:g′(x0)<0(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù)).

查看答案和解析>>

同步練習(xí)冊答案