7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}-6x+10),x≥0}\\{{3}^{x}+2x,x<0}\end{array}\right.$,則函數(shù)y=f(x)的零點個數(shù)為(  )
A.0B.1C.2D.3

分析 分段解方程f(x)=0即可.

解答 解:當(dāng)x≥0時,${log}_{4}^{({x}^{2}-6x+10)}=0$⇒x2-6x+9=0⇒x=3,符合題意;
當(dāng)x<0時,f(x)=3x+2x單調(diào)遞增,且f(-1)<0,f(0)>0,函數(shù)在(-1,0)上有一個零點,
∴函數(shù)y=f(x)的零點個數(shù)為2,
故選:C

點評 本題考查了函數(shù)的零點的定義及求解,分類討論思想,屬于中檔題,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)=$\left\{\begin{array}{l}{-x+1,0≤x≤1}\\{lnx,1<x≤e}\end{array}\right.$,直線x=0,x=e,y=0,y=1所圍成的區(qū)域為M,曲線y=f(x)與直線y=1圍成的區(qū)域為N,在區(qū)域M內(nèi)任取一個點P,則點P在區(qū)域N內(nèi)概率為( 。
A.$\frac{2e-3}{2e}$B.$\frac{3}{2e}$C.$\frac{{e}^{e}{-e}^{2}+e-1}{e}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow{m}$=(x,y),$\overrightarrow{n}$=(x-y),P為曲線$\overrightarrow{m}$•$\overrightarrow{n}$=1(x>0)上的一個動點,若點P到直線x-y+1=0的距離大于λ恒成立,則實數(shù)λ的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算:
(1)$\root{3}{{{{(-27)}^2}}}+{(0.002)^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{({\sqrt{2}-\sqrt{3}})^0}$
(2)lg25+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)計算:$\frac{1}{2}lg2+\sqrt{{{(lg\sqrt{2})}^2}-lg2+1}-\root{3}{{\sqrt{a^9}•\sqrt{{a^{-3}}}}}÷\root{3}{{\frac{{\sqrt{{a^{13}}}}}{{\sqrt{a^7}}}}}$,a>0;
(Ⅱ)已知$a={3^{{{log}_2}6-{{log}_3}\frac{1}{5}}},b={6^{{{log}_2}3}}•[3+\sqrt{{{(-4)}^2}}]$,試比較a與b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-3x
(1)求f(x)的單調(diào)區(qū)間;  
(2)求f(x)在區(qū)間[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}x-5,x≥2000\\ f[{f(x+8)}],x<2000\end{array}$,則f(1996)=(  )
A.1999B.1998C.1997D.2002

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個命題中正確的是( 。
A.經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過任意兩個不同點P1(x1,y1)、P2(x2,y2)的直線都可以用方程$\frac{(y-{y}_{1})}{({y}_{2}-{y}_{1})}$=$\frac{(x-{x}_{1})}{({x}_{2}-{x}_{1})}$表示
C.不經(jīng)過原點的直線都可以用方程$\frac{x}{a}+\frac{y}$=1表示
D.斜率存在且不為0,過點(n,0)的直線都可以用方程x=ny+n表示.

查看答案和解析>>

同步練習(xí)冊答案