16.求證:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

分析 由已知條件利用余弦函數(shù)加法定理和正弦函數(shù)加法定理即可證明.

解答 證明:(1)sin($\frac{3π}{2}$-α)=sin$\frac{3π}{2}$cosα-cos$\frac{3π}{2}$sinα=-cosα;
(2)cos($\frac{3π}{2}$+α)=cos$\frac{3π}{2}$cosα-sin$\frac{3π}{2}$sinα=sinα.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意余弦函數(shù)加法定理和正弦函數(shù)加法定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在哈爾濱的中央大街的步行街同側(cè)有6塊廣告牌,牌的底色可選用紅、藍(lán)兩種顏色,若要求相鄰兩塊牌的底色不都為藍(lán)色,則不同的配色方案共有(  )
A.20B.21C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}-6x+10),x≥0}\\{{3}^{x}+2x,x<0}\end{array}\right.$,則函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lg(x-a)的定義域?yàn)锳,集合B={y|y=2x-1,x∈R}.
(1)若A=B,求實(shí)數(shù)a的值;
(2)若(∁RA)∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=loga(2-ax)在[0,4]上為增函數(shù),則b=4的取值范圍是( 。
A.$({0,\frac{1}{2}})$B.(0,1)C.$({\frac{1}{2},1})$D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=\frac{sin2x}{{{e^{|x|}}}}$的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)=xlnx,g(x)=x2-1.
(1)求證:當(dāng)x≥1時(shí),f(x)≤$\frac{1}{2}$g(x)
(2)若當(dāng)x≥1時(shí),f(x)-mg(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)如圖1,矩形ABCD中AB=1,AD>1且AD長(zhǎng)不定,將△BCE沿CE折起,使得折起后點(diǎn)B落到AD邊上,設(shè)∠BCE=θ,CE=L,求L關(guān)于θ的函數(shù)關(guān)系式并求L的最小值.
(2)如圖2,矩形ABCD中AB=1.將矩形折起,使得點(diǎn)B與點(diǎn)F重合,當(dāng)點(diǎn)F取遍CD邊上每一個(gè)點(diǎn)時(shí),得到的每一條折痕都與邊AD、CB相交,求邊AD長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x>0,y>0,x+y=2,求證:(1+$\frac{1}{x}$)(1+$\frac{1}{y}$)≥4.

查看答案和解析>>

同步練習(xí)冊(cè)答案