5.在△ABC中,|AB|=4,|AC|=2,∠A=60°,|BC|=2$\sqrt{3}$.

分析 由已知利用余弦定理即可計(jì)算求值得解.

解答 解:∵|AB|=4,|AC|=2,∠A=60°,
∴由余弦定理可得:BC2=AB2+AC2-2•AB•AC•cos∠A=16+4-2×$2×4×\frac{1}{2}$=12,
∴解得:|BC|=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.某校從參加高一年級(jí)期中考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如圖所示的部分頻率分布直方圖.在統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,觀察圖形的信息,據(jù)此估計(jì)本次考試的平均分為71.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)離散型隨機(jī)變量X的所有可能值為1,2,3,4,且P(x=k)=ak,(k=1,2,3,4)
(1)求常數(shù)a的值;
(2)求X的分布列;
(3)求P(2≤x<4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知四棱錐E-ABCD的底面是平行四邊形,BC=2,BD=$\sqrt{6}$,ED=4,EB=EC=$\sqrt{10}$,平面BCE⊥平面ABCD.
(Ⅰ)證明:BD⊥平面EBC;
(Ⅱ)求三棱錐B-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.用數(shù)學(xué)歸納法證明:2n+2•3n+5n-4(n∈N*)能被25整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在同一平面直角坐標(biāo)系中,由曲線y=tanx變成曲線y′=3tan2x′的伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè){an}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b2=7,S2+b2=6
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某班50名學(xué)生的數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:
(Ⅰ)求圖中的x值;
(Ⅱ)從不低于80分的學(xué)生中隨機(jī)抽取3人,成績(jī)不低于90分的人數(shù)記為ξ,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.二項(xiàng)式($\frac{\sqrt{5}}{5}$x2-$\frac{1}{x}$)6的展開式中的常數(shù)項(xiàng)為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案