分析 (Ⅰ)取PB的中點G,連接EG、FG,由已知結合三角形中位線定理可得DE∥FG且DE=FG,得四邊形DEGF為平行四邊形,從而可得DF∥EG,再由線面平行的判定可得DF∥平面PBE;
(Ⅱ)利用等積法可得:VD-PBE=VP-BDE,代入棱錐體積公式可得點F到平面PBE的距離.
解答 (Ⅰ)證明:取PB的中點G,連接EG、FG,則FG∥BC,且FG=$\frac{1}{2}BC$.
∵DE∥BC且DE=$\frac{1}{2}$BC,∴DE∥FG且DE=FG,
∴四邊形DEGF為平行四邊形,
∴DF∥EG,又EG?平面PBE,DF?平面PBE,
∴DF∥平面PBE;
(Ⅱ)解:由(Ⅰ)知,DF∥平面PBE,
∴點D到平面PBE的距離與F到平面PBE的距離相等,
故轉化為求D到平面PBE的距離,設為d,
利用等體積法:VD-PBE=VP-BDE,即$\frac{1}{3}{S}_{△PBE}•d=\frac{1}{3}{S}_{△BDE}•PD$.
${S}_{△BDE}=\frac{1}{2}•DE•AB=1$,
∵$PE=BE=\sqrt{5}$,$PB=2\sqrt{3}$,∴${S}_{△PBE}=\sqrt{6}$.
∴d=$\frac{\sqrt{6}}{3}$.
點評 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{1+\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | i | B. | -i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{i}{2}$ | D. | $\frac{i}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x-1)2+(y-2)2=2 | B. | (x+1)2+(y+2)2=2 | C. | (x-1)2+(y-2)2=5 | D. | (x+1)2+(y+2)2=5 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com