【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒(méi)有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒(méi)有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3.

(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.

【答案】(1)數(shù)學(xué)期望為3.05,分布列見(jiàn)解析(2)選擇方案甲

【解析】

1)在A點(diǎn)投籃命中記作,不中記作;在B點(diǎn)投籃命中記作,不中記作,其中,的所有可能取值為,即可求出

, , ,進(jìn)而求出的數(shù)學(xué)期望.

2)分別求出選手選擇方案甲通過(guò)測(cè)試的概率為,和選手選擇方案乙通過(guò)測(cè)試的概率為比較大小,即可求出結(jié)果

1)在A點(diǎn)投籃命中記作,不中記作;在B點(diǎn)投籃命中記作,不中記作,

其中,

的所有可能取值為,則

,

的分布列為: ,,,

所以,

所以,的數(shù)學(xué)期望為

2)選手選擇方案甲通過(guò)測(cè)試的概率為,

選手選擇方案乙通過(guò)測(cè)試的概率為

,

因?yàn)?/span>,所以該選手應(yīng)選擇方案甲通過(guò)測(cè)試的概率更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】焦點(diǎn)在x軸上的橢圓C經(jīng)過(guò)點(diǎn),橢圓C的離心率為,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)M的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過(guò)M且平行于OP的直線l交橢圓CA,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:y=x,l2:y=-x,動(dòng)點(diǎn)P,Q分別在l1,l2上移動(dòng),|PQ|=2,N是線段PQ的中點(diǎn),記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過(guò)點(diǎn)M(0,1)分別作直線MA,MB交曲線C于A,B兩點(diǎn),設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】藥材人工種植技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:人工種植藥材時(shí),某種藥材在一定的條件下,每株藥材的年平均生長(zhǎng)量單位:千克是每平方米種植株數(shù)x的函數(shù).當(dāng)x不超過(guò)4時(shí),v的值為2;當(dāng)時(shí),vx的一次函數(shù),其中當(dāng)x10時(shí),v的值為4;當(dāng)x20時(shí),v的值為0

當(dāng)時(shí),求函數(shù)v關(guān)于x的函數(shù)表達(dá)式;

當(dāng)每平方米種植株數(shù)x為何值時(shí),每平方米藥材的年生長(zhǎng)總量單位:千克取得最大值?并求出這個(gè)最大值.年生長(zhǎng)總量年平均生長(zhǎng)量種植株數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f (x)=lnx-x+1.

(1)f (x)的極值;

(2)0<a<1,證明函數(shù)g (x)=(x-a)exax2+a(a-1) x(x>lna)有極小值點(diǎn)x0,且g (x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù)滿(mǎn)足,且時(shí)有,甲、乙、丙、丁四位同學(xué)有下列結(jié)論:

甲:

乙:函數(shù)上是增函數(shù);

丙:函數(shù)關(guān)于直線對(duì)稱(chēng);

。喝,則關(guān)于的方程上所有根之和為.

其中正確的是(

A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)定義域?yàn)?/span>,對(duì)于區(qū)間,如果存在,使得,則稱(chēng)區(qū)間為函數(shù)區(qū)間.

(Ⅰ)判斷是否是函數(shù)區(qū)間;

(Ⅱ)若是函數(shù)(其中)的區(qū)間,求的取值范圍;

(Ⅲ)設(shè)為正實(shí)數(shù),若是函數(shù)區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣的一個(gè)問(wèn)題:三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還”.其大意為:有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問(wèn)此人第2天走的路程為

A. 24 B. 48 C. 72 D. 96

查看答案和解析>>

同步練習(xí)冊(cè)答案