7.設(shè){an}為遞減等比數(shù)列,a1+a2=11,a1•a2=10則lga1+lga2+…+lga10=-35.

分析 設(shè)等比數(shù)列{an}的公比為q,a1+a2=11,a1•a2=10,解得a1,a2.根據(jù){an}為遞減等比數(shù)列,可得a1=10,a2=1,q=$\frac{1}{10}$.a(chǎn)1a10=$1{0}^{2}×(\frac{1}{10})^{9}$=10-7=a2a9=….再利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,a1+a2=11,a1•a2=10,解得a1=1,a2=10;a1=10,a2=1.
∵{an}為遞減等比數(shù)列,∴a1=10,a2=1,q=$\frac{1}{10}$.
∴a1a10=$1{0}^{2}×(\frac{1}{10})^{9}$=10-7=a2a9=….
則lga1+lga2+…+lga10=$lg({a}_{1}{a}_{10})^{5}$lg(10-75=-35.
故答案為:-35.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、對(duì)數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$sinα=\frac{4}{5}$,$sinβ=-\frac{5}{13}$,$α∈({\frac{π}{2},π})$,$β∈({π,\frac{3}{2}π})$;求$sin({\frac{π}{4}-α})$,tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)a,b∈R,函數(shù)f(x)=lnx-ax,$g(x)=\frac{x}$.
(Ⅰ)若f(x)=lnx-ax與$g(x)=\frac{x}$有公共點(diǎn)P(1,m),且在P點(diǎn)處切線相同,求該切線方程;
(Ⅱ)若函數(shù)f(x)有極值但無(wú)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a>0,b=1時(shí),求F(x)=f(x)-g(x)在區(qū)間[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當(dāng)x∈[0,2]時(shí),F(xiàn)(x)=f(x)-g(x)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)對(duì)x∈[0,5]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x3+ax2+bx+a2在x=-1處有極值8,則f(1)等于( 。
A.-4B.16C.-4或16D.16或18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,小華和小明兩個(gè)小伙伴在一起做游戲,他們通過(guò)劃拳(剪刀、石頭、布)比賽決勝誰(shuí)首先登上第3個(gè)臺(tái)階,他們規(guī)定從平地開(kāi)始,每次劃拳贏的一方登上一級(jí)臺(tái)階,輸?shù)囊环皆夭粍?dòng),平局時(shí)兩個(gè)人都上一級(jí)臺(tái)階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級(jí)臺(tái)階的獎(jiǎng)勵(lì),除非已經(jīng)登上第3個(gè)臺(tái)階,當(dāng)有任何一方登上第3個(gè)臺(tái)階時(shí),游戲結(jié)束,記此時(shí)兩個(gè)小伙伴劃拳的次數(shù)為X.
(1)求游戲結(jié)束時(shí)小華在第2個(gè)臺(tái)階的概率;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知直線l:nx+(n+1)y=1(n∈N*)與坐標(biāo)軸圍成的面積為an,則數(shù)列{an}的前10項(xiàng)和S10為$\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.sin(-870°)=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案