19.如圖,小華和小明兩個(gè)小伙伴在一起做游戲,他們通過(guò)劃拳(剪刀、石頭、布)比賽決勝誰(shuí)首先登上第3個(gè)臺(tái)階,他們規(guī)定從平地開始,每次劃拳贏的一方登上一級(jí)臺(tái)階,輸?shù)囊环皆夭粍?dòng),平局時(shí)兩個(gè)人都上一級(jí)臺(tái)階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級(jí)臺(tái)階的獎(jiǎng)勵(lì),除非已經(jīng)登上第3個(gè)臺(tái)階,當(dāng)有任何一方登上第3個(gè)臺(tái)階時(shí),游戲結(jié)束,記此時(shí)兩個(gè)小伙伴劃拳的次數(shù)為X.
(1)求游戲結(jié)束時(shí)小華在第2個(gè)臺(tái)階的概率;
(2)求X的分布列和數(shù)學(xué)期望.

分析 (1)討論最后一次劃拳之前兩人的位置,利用相互獨(dú)立事件概率公式計(jì)算各種情況的概率;
(2)利用相互獨(dú)立事件概率公式計(jì)算各種情況的概率,列出分布列,再計(jì)算均值.

解答 解:(1)設(shè)事件“第i(i∈N*)次劃拳小華贏”為Ai;事件“第i次劃拳小華平”為Bi;事件“第i次劃拳小華輸”為Ci
則P(Ai)=P(Bi)=P(Ci)=$\frac{1}{3}$.
因?yàn)橛螒蚪Y(jié)束時(shí)小華在第2個(gè)臺(tái)階,所以這包含兩種可能的情況:
第一種:小華在第1個(gè)臺(tái)階,并且小明在第2個(gè)臺(tái)階,最后一次劃拳小華平;
其概率為P1=${A}_{2}^{2}$P(B1)P(C2)P(B3)+P(C1)P(A2)P(C3)P(B4)=$\frac{7}{81}$,
第二種:小華在第2個(gè)臺(tái)階,并且小明也在第2個(gè)臺(tái)階,最后一次劃拳小華輸,
其概率為P2=P(B1)P(B2)P(C3)+A${\;}_{3}^{3}$P(A1)P(B2)P(C3)P(C4)+A${\;}_{2}^{2}$P(A1)P(C2)P(A3)P(C4)P(C5)=$\frac{29}{243}$.
所以游戲結(jié)束時(shí)小華在第2個(gè)臺(tái)階的概率為P=$\frac{7}{81}+\frac{29}{243}$=$\frac{50}{243}$.
(2)依題可知X的可能取值為2、3、4、5,
$P({X=5})=2P({A_1})P({C_2})P({A_3})P({C_4})=2×{({\frac{1}{3}})^4}=\frac{2}{81}$,
$P({X=2})=2P({A_1})P({A_2})=2×{({\frac{1}{3}})^2}=\frac{2}{9}$,
P(X=3)=2P(A1)P(B2)P(A3)+2P(B1)P(A2)P(A3)+P(B1)P(B2)P(B3)+
2P(A1)P(B2)P(B3)+2P(B1)P(A2)P(B3)+2P(B1)P(B2)P(A3)+2P(C1)P(A2)P(A3)=$\frac{13}{27}$,
$P({X=4})=1-P({X=5})-P({X=2})-P({X=3})=\frac{22}{81}$,
所以X的分布列為:

X2345
P$\frac{2}{9}$$\frac{13}{27}$$\frac{22}{81}$$\frac{2}{81}$
所以X的數(shù)學(xué)期望為:$E(X)=2×\frac{2}{9}+3×\frac{13}{27}+4×\frac{22}{81}+5×\frac{2}{81}=\frac{251}{81}$.

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的分布列,討論情況較多,情況分類要不重不漏,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知正三角形ABC的邊長(zhǎng)為2,點(diǎn)D是邊BC上一動(dòng)點(diǎn),點(diǎn)D到AB、AC的距離分別為x、y,則xy的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)交于A、B兩點(diǎn),點(diǎn)D為圓M與x軸正半軸的交點(diǎn),點(diǎn)E為雙曲線C的左頂點(diǎn),若四邊形EADB為菱形,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.3C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè){an}為遞減等比數(shù)列,a1+a2=11,a1•a2=10則lga1+lga2+…+lga10=-35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知復(fù)數(shù)z1=1-2i,z2=3+4i,i為虛數(shù)單位.
(Ⅰ)若復(fù)數(shù)|z2|+az1對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若z(z1+z2)=z1-z2,求z的共軛復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,且1+3Sn=an+1,a5=256,bn+bn+1=${log}_{\sqrt{2}}$an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:bnbn+1≥Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(0<a<b)的半焦距為c,直線L過(guò)(b,0),(0,a)兩點(diǎn).已知原點(diǎn)到直線L的距離為$\frac{2c}{5}$,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{5}{4}$或5C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某班有學(xué)生55人,現(xiàn)將所有學(xué)生按1,2,3,…,55,隨機(jī)編號(hào),若采用系統(tǒng)抽樣的方法抽取一個(gè)容量為5的樣本,已知編號(hào)為6,a,28,b,50的學(xué)生在樣本中,則a+b=( 。
A.52B.54C.55D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在平行四邊形ABCD 中,$∠A=\frac{π}{3}$,邊AB、AD長(zhǎng)分別為2、1,若E、F分別是邊BC、CD上的點(diǎn),且滿足$\frac{{|{\overrightarrow{CE}}|}}{{|{\overrightarrow{CB}}|}}=\frac{{|{\overrightarrow{DF}}|}}{{|{\overrightarrow{DC}}|}}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的取值范圍是[2,5].

查看答案和解析>>

同步練習(xí)冊(cè)答案