【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點(diǎn)P是圓C上的動(dòng)點(diǎn).記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.

【答案】

【解析】設(shè)P點(diǎn)的坐標(biāo)為(3+ cosα,4+sinα),

則d=|PA|2+|PB|2=(3+sinα)2+(3+cosα)2+(3+sinα)2+(5+cosα)2

=52+12sinα+16cosα=52+20sin(θ+α)

當(dāng)sin(θ+α)=1時(shí),即12sinα+16cosα=20時(shí),d取最大值72,當(dāng)sin(θ+α)=﹣1時(shí),

即12sinα+16cosα=﹣20,d取最小值32,

d的取值范圍是[32,72].

故答案為[32,72].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斜棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥面ABC,側(cè)面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點(diǎn).

(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點(diǎn),若C1D∥EF,請確定點(diǎn)D位置,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求證:A,B,C,P四點(diǎn)共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb , g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a , b , c , d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且 為純虛數(shù)( 是z的共軛復(fù)數(shù)).
(1)設(shè)復(fù)數(shù) ,求|z1|;
(2)設(shè)復(fù)數(shù) ,且復(fù)數(shù)z2所對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn) 的極坐標(biāo)為 ,曲線 的參數(shù)方程為 為參數(shù)).
(1)直線 且與曲線 相切,求直線 的極坐標(biāo)方程;
(2)點(diǎn) 與點(diǎn) 關(guān)于 軸對稱,求曲線 上的點(diǎn)到點(diǎn) 的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案