7.設(shè)點F1、F2分別為雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,若在雙曲線左支上存在一點P,滿足|PF1|=|PF2|,點F1到直線PF2的距離等于雙曲線的實軸長,則該雙曲線的離心率為(  )
A.$\frac{\sqrt{41}}{4}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{5}{3}$

分析 利用題設(shè)條件和雙曲線性質(zhì)在三角形中尋找等量關(guān)系,得出a與b之間的等量關(guān)系,進而求出離心率.

解答 解:依題意|PF2|=|F1F2|,可知三角形PF2F1是一個等腰三角形,F(xiàn)2在直線PF1的投影是其中點,
由勾股定理知可知|PF1|=2$\sqrt{4{c}^{2}-4{a}^{2}}$=4b
根據(jù)雙曲定義可知丨PF1丨-|PF2|=2a,即|4b-2c=2a,整理得c=2b-a,
代入c2=a2+b2整理得3b2-4ab=0,求得 $\frac{a}$=$\frac{4}{3}$;
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{5}{3}$.
故選:D.

點評 本題考查三角形的性質(zhì)與雙曲線的定義的應用,突出了對計算能力和綜合運用知識能力的考查,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.閱讀如圖所示的程序框圖,運行相應的程序,輸出的S=127.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,則(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)復數(shù)z滿足z2=3+4i(i是虛數(shù)單位),則z的模為( 。
A.25B.5C.$\sqrt{5}$D.2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},那么(∁IM)∩(∁IN)等于(  )
A.B.jfxrpyoC.{a,c}D.{b,e}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右焦點F(1,0)的直線與橢圓C交于兩點A、B,自A、B向直線x=5作垂線,垂足分別為A1、B1,且$\frac{|A{A}_{1}|}{AF}$=$\sqrt{5}$.
(1)求橢圓C的方程;
(2)記△AFA1、△FA1B1、△BFB1的面積分別為S1、S2、S3,證明:$\frac{{S}_{1}•{S}_{3}}{{{S}_{2}}^{2}}$是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.復數(shù)z=i2016+($\frac{1+i}{1-i}$)2017(i是虛數(shù)單位)的共軛復數(shù)$\overline{z}$表示的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=2sinωx+2sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為2π,若x∈(0,$\frac{π}{2}$),則函數(shù)取得最大值時的x=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知一長方體的體對角線的長為10,這條對角線在長方體一個面上的正投影長為8,則這 個長方體體積的最大值為192.

查看答案和解析>>

同步練習冊答案